NISTIR 8271

Face Recognition Vendor Test (FRVT) Part 2: Identification

Patrick Grother
Mei Ngan
Kayee Hanaoka

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR. 8271

Face Recognition Vendor Test (FRVT) Part 2: Identification

Patrick Grother
Mei Ngan
Kayee Hanaoka
Information Access Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/ $10.6028 /$ NIST.IR. 8271

September 2019

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

Hational Institute of Standards and Technology Interagency or Internal Report 8271
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8271 , 186 pages (September 2019)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR. 8271

ACKNOWLEDGMENTS

The authors are grateful to Wayne Salamon and Greg Fiumara at NIST for designing robust software infrastructure for image and template storage and parallel execution of algorithms across our computers. Thanks also to Brian Cochran at NIST for providing highly available computers and network-attached storage.

DISCLAIMER

Specific hardware and software products identified in this report were used in order to perform the evaluations described in this document. In no case does identification of any commercial product, trade name, or vendor, imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best available for the purpose.

Executive Summary

This report updates and extends NIST Interagency Report 8238 , documenting the evaluation of automated face recognition algorithms submitted to NIST in November 2018. The algorithms, which implement one-to-many identification of faces appearing in two-dimensional images, are prototypes from the research and development laboratories of mostly commercial suppliers, and are submitted to NIST as compiled black-box libraries implementing a NIST-specified C + + test interface. The report therefore does not describe how algorithms operate.

The evaluation used four datasets - frontal mugshots, profile views, webcam photos and wild images - and the report lists accuracy results alongside developer names. It will therefore be useful for comparison of face recognition algorithms and assessment of absolute capability. The primary dataset is comprised of 26.6 million reasonably wellcontrolled live portrait photos of 12.3 million individuals. The three smaller datasets contain more unconstrained photos: 3.2 million webcam images; 200 thousand side-view images; and 2.5 million photojournalism and amateur photographer photos. These datasets are sequestered at NIST, meaning that developers do not have access to them for training or testing. The last dataset, however, consists of images drawn from the internet for testing purposes so while it is not truly sequestered, its composition is unknown to the developers.

The evaluation was run in three phases, starting Feburary, June, and November 2018 respectively, with developers receiving technical feedback betwreen phases. Results for 127 algorithms from 41 developers were published in November 2018 as NIST Interagency Report 8238. This update adds results for an additional 76 algorithms from 42 developers submitted in October 2018. At that time seven developers ceased participation, and nine developers started. The developer totals constitute a substantial majority of the face recognition industry,

The major result given in NIST IR 8238 was that massive gains in accuracy have been achieved in the last five years (2013-2018) and these far exceed improvements made in the prior period (2010-2013). While the industry gains were broad - at least 30 developers' algorithms outperformed the most accurate algorithm from late 2013 - there remains a wide range of capability. While this report shows accuracy gains only over the course of 2018 , the most accurate algorithm reported here is substantially more accurate than anything reported in NIST IR 8238. This is evidence that face recognition development continues apace, and that FRVT reports are but a snapshot of contemporary capability.
From discussion with developers, the accuracy gains stem from the adoption of deep convolutional neural networks. As such, face recognition has undergone an industrial revolution, with algorithms increasingly tolerant of poorly illuminated and other low quality images, and poorly posed subjects. One related result is that a few algorithms correctly match side-view photographs to galleries of frontal photos, with search accuracy approaching that of the best $c .2010$ algorithms executing frontal-frontal search. The capability to recognize under a 90 -degree change in viewpoint - pose invariance - has been a long-sought milestone in face recognition research.

With good quality portrait photos, the most accurate algorithms will find matching entries, when present, in galleries containing 12 million individuals, with rank one miss rates of approaching 0.1%. The remaining errors are in large part attributable to long-run ageing, facial injury and poor image quality. In at least 5% of images identification of ten succeeds (i.e. the mate is returned at rank 1) but recognition similarity scores are weak such that true and false matches become indistinguishable, and human adjudication becomes necessary.

From Fall 2019 this report will be updated continuously as new algorithms are submitted to FRVI, and run on new datasets. Participation in the one-to-many identification track requires a devloper to first demonstrate high accuracy in the one-to-one verification track of FRVT

$\begin{aligned} & 2019 / 09 / 11 \\ & 17: 24: 52 \end{aligned}$	FNIR(N,R,T) FPR $(N, T)=$	False neg. identification rate False pos. identification wate	$\mathrm{N}=\mathrm{Num}$, enrolled subjects $\mathrm{R}=$ Num. candidates exa mined	$\mathrm{T}=$ Thteshald	$\begin{aligned} & T=0 \rightarrow \text { Investigation } \\ & T>0 \rightarrow \text { Identification } \end{aligned}$

Scope and Context

Audience: This report is intended for developers, integrators, end users, policy makers and others who have some familiarity with biometrics applications. The methods and metrics documented here will be of interest to organizations engaged in tests of face recognition algorithms. Some of these have been incorporated in the ISO/IEC 19795 Part 1 Biometric Testing and Reporting Framework standard, now under revision.
Prior benchmarks: Automated face recognition accuracy has improved massively in the two decades since initial commercialization of the various technologies. NIST has tracked that improvement through its conduct of regular independent, free, open, and public evaluations. These have fostered improvements in the state of the art. This report serves as an update to the NIST Interagency Report 8238 on performance of face identification algorithms, published in November 2018.

Scope: As with NIST IR 8238, this report documents recognition results for four databases containing in excess of 30.2 million still photographs of 14.4 million individuals. This constitutes the largest public and independent evaluation of face recognition ever conducted. It includes results for accuracy, speed, investigative vs. identification applications, scalability to large populations, use of multiple images per person, images of cooperative and non-cooperative subjects.

The report also includes results for ageing, recognition of twins, and recognition of profile-view images against frontal galleries. It otherwise does not address causes of recognition failure, neither image-specific problems nor subjectspecific factors including demographics. Separate reports on demographic dependencies in face recognition will be published in the future. Additionally out of scope are: performance of live human-in-the-loop transactional systems like automated border control gates; human recognition accuracy as used in forensic applications; and recognition of persons in video sequences (which NIST evaluated separately [9]). Some of those applications share core matching technologies that are tested in this report.

Images: Three kinds of images are employed. The primary dataset is a set of law enforcement mugshot images (Fig. 3) which are enrolled and then searched with three kinds of images; 1) other mugshots (i.e. within-domain); 2) profileview photographs (90 degree cross-view); 3) lower quality webcam images (Fig. 4) collected in similar detention operations (cross-domain); Additionally wild images (Fig. 6) are searched against other wild images.
Participation and industry coverage: The report includes performance figures for 203 prototype algorithms from the research laboratories of 51 commercial developers and one university. This represents a substantial majority of the face recognition industry, but only a tiny minority of the academic community. Participation was open worldwide. While there is no charge for participation, developers incur some software engineering expense in implementing their algorithms behind the NIST application programming interface (API). The test is a black-box test where the function of the algorithm, and the intellectual property associated with it, is hidden inside pre-compiled libraries.
Recent technology development: Most face recognition research with deep convolutional neural networks (CNNs) has been aimed at achieving invariance to pose, illumination and expression variations that characterize photojournalism and social media images. The initial research $[18,24]$ employed large numbers of images of relatively few ($\sim 10^{4}$) individuals to learn invariance. Inevitably much larger populations ($\sim 10^{7}$) were employed for training [11,20] but the benchmark, Labeled Faces in the Wild with (essentially) an equal error rate metric [12], represents an easy task, one-to-one verification at very high false match rates. While a larger scale identification benchmark duly followed, Megaface [15], its primary metric, rank one hit rate, contrasts with the high threshold discrimination task required in most large-population applications of face recognition, namely credential de-duplication, and background checks. There, identification in galleries containing up to 10^{8} individuals must be performed using a) very few images per individual and b) stringent thresholds to afford very low false positive identification rates. FRVT 2018 was launched to measure the capability of the new technologies, including in these two cases. FRVT has included open-set identification tests since 2002, reporting both false negative and positive identification rates [7].

2019/09/11	FAIR(N, R, T) $=$	False neg. identification rate	$\mathrm{N}=$ Num. enrolled subiects	$\mathrm{T}=$ Theeshald	$\mathrm{T}=0 \rightarrow$ Investigation
17:24:52	$\operatorname{FPIR}(1), T)=$	False pos. identification mate	$\mathrm{R}=$ Num. candidatee examined	T-T.	T $>0 \rightarrow$ Identification

Performance metrics for applications: This report documents the performance of one-to-many face recognition algorithms. The word "performance" here refers to recognition accuracy and computational resource usage, as measured by executing those algorithms on massive sequestered datasets.

This report includes extensive tabulation of recognition error rates germane to the main use-cases for face search technology. The Figure below, inspired by the Figure 1 in [25] differentiates different applications of the technolgy. The last row directs readers to the main tables relevant to those applications, respectively threshold-based and rank-based metrics that are special cases of the metrics given in section 3. The terms negative identification and positive identification are taken from the ISO/IEC 2382-37:2017 standardized biometrics vocabulary:

The algorithms are specifically configured for these applications by setting thresholds and candidate list lengths. Both
rank-based metrics and threshold-based metrics include tradeoffs. In investigation, overall accuracy will be reduced If labor is only available to review a few candidates from the automated system. Note that when a fixed number of candidates are returned, the false positive identification rate of the automated face recognition engine will be 100%, because a probe image of anyone not enrolled will still return candidates. In identification applications where false positives must be limited to satisfy reviewer labor availability or a security objective, higher false negative rates are implied. This report includes extensive quantification of this threshold-based tradeoff. See Sec. 3

Template diversity: The FRVT is designed to evaluate black-box technologies with the consequence that the templates that hold features extracted from face images are entirely proprietary opaque binary data that embed considerable intellectual property of the developer. Despite migration to CNN-based technologies there is no consensus on the optimal feature vector dimension. This is evidenced by template sizes ranging from below 100 bytes to more than four kilobytes. This diversity of approaches, suggests there is no prospect of a standard template something that would require a common feature set to be extracted from faces. Interoperability in automated face recognition remains solidly based on images and documentary standards for those, in particular the ICAO portrait [29] specification deriving from the ISO/IEC 19794-5 Token frontal [26] standard, which are similar to certain ANSI/NIST Type 10 [28] formats.
Training: The algorithms submitted to NTST have been developed using image datasets that developers do not disclose. The development will often include application of machine learning techniques and will additionally involve iterative training and testing cycles. NIST itself does not perform any training and does not refine or alter the algorithm in any way. Thus the model, data files, and libraries that define an algorithm are fixed for the duration of the tests. This reflects typical operational reality where recognition software, once installed, is fixed and constant until upgraded. This situation persists because on-site training of algorithms on customer data is atypical essentially because training is not a turnkey process.
Automated search and human review: Virtually all applications using automated face search require human review of the outputs at some frequency: Always for investigational applications; rarely in positive identification applications, after rejection (false or otherwise); and rarely in negative identification applications, after an alarm (false or otherwise). The human role is usually to compare a reference image with the query image or the live-subject if present, to render either a definitive decision on "exclusion" (different subjects), or "identification" (same subject), or a declaration that one or both images have "no value" and that no decision can be made. Note that automated face recognition algorithms are not built to do exclusion - low scores from a face comparison arise from different faces and poor quality images of the same face.
Human reviewers make recognition errors $[5,19,27]$ and are sensitive to image acquisition and quality, Accurate human review is supported by high resolution-as specified in the Type 50,51 acquisition profiles of the ANSI/NTST Type 10 record [28], and by multiple non-frontal views as specified in the same standard. These often afford views of the ear. Organizations involved in image collection should consider supporting human adjudication by collecting high-resolution frontal and non-frontal views, preparing low resolution versions for automated face recognition [26], and retaining both for any subsequent resolution of candidate matches. Along these lines, the ISO/IEC Joint Technical Committee 1 subcommittee 37 on biometrics has just initiated projects on image quality assessment and face-aware capture.
Next steps: NTST expects to publish a first report on demographic dependencies in face recognition in 2019. This will include the effects of age, sex and race.

2019/09/11	FNIR $\mathrm{N}, \mathrm{R}, \mathrm{T})=$	False neg. identification rate	$\mathrm{N}=\mathrm{Num}$. enrolled subjects	$T=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investization
17:24:52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos identification uale	$\mathrm{R}=$ Num. candidates examined		T>0 \rightarrow Identification

Technical Summary

\triangleright Rank-based accuracy: The inset table shows false negative "miss rates" realized when searching a 12 million person gallery populated with FRVT 2018 mugshots. The two most accurate algorithms fail to return the correct mate somewhere within the top 50 ranks in fewer than 0.1% of searches (Table 1, rows 1,2). This is achieved for galleries populated with multiple images per person. In the case where only the most recent image is present the miss rate is modestly higher (rows 3,4). The mates are almost always at rank 1 , so in cases where only very short candidate lists must be used, the rank- 1 miss rate is barely higher 0.12% (row 5) which again modestly rises when persons are enrolled with a single image (row 7). All the miss rates are measured over a fixed set of 154549 searches, and the lowest false negative error rate recorded in this report $(0.038 \%$, row 10$)$ corresponds to just 58 misses. Given such low error rates, what misses remain? By inspection they arise in five categories, those due to; a) ageing i.e. longterm time lapse between images; b) images of injured individuals e.g. bruised or bandaged faces; c) the presence of a second face e.g. printed on a T-shirt; d) images of some object that is not a lace; e) profile-view images, and f) actual clerical ID label errors. As discussed in section 3.8.2, the first three categories are legitimately part of a test designed to measure accuracy on portrait images col-

Investigation		Num-	Errolled	Num-	Algorithem	FNMR	
	iss rate at	subjects	image	images		Raw	Corrected
1.	Rauk-50	12M	Lifetime	26.1M	NEC-2	0.09\%	0.09\%
2	Rank-50	12 M	Lifetime	26.1M	Microsoft-5	0.06\%	0.66%
3	Rank-50	12 M	Recent	12M	NEC-2	0.25\%	0.08\%
4	Ratk-50	12 M	Recent	12 M	Microsoft-5	0,21\%	0.09\%
5	Rank-1	12M	Lifetime	26.1M	NEC-2	0.14\%	0.12\%
6	Rank-1	12 M	Lifetime	26.1M	Microsoft-5	0.25\%	0.24\%
7	Rank-1	12 M	Recent	12M	NEC-2	0.31\%	0.13\%
8	Rank-1	12M	Recent	12M	Microsoft-5	0.52\%	0.37\%
9	Ratk-50	640 K	Lifetime	1.25 M	NEC-2	0.08\%	0.08\%
10	Rank-50	640K	Lifetime	1.25 M	Microsoft-5	0.04\%	0.04\%

Table 1: Rank-based accuracy floor 2018. lected in law-enforcement settings. The latter three categories, however, should not be included in a test that is attempting to measure accuracy on only frontal images. Thus, by removing all known images in those categories, the rightmost column shows error rates that would be attainable in an application where exclusively frontal portrait images were collected without identity labeling errors.

Error rates today are two orders of magnitude below what they were in 2010, a massive reduction that stems from wholesale replacement of the old algorithms with those based on (deep) convolutional neural networks (CNNs). This constitutes a revolution rather than the evolution that defined the period 2010-2013. The rapid innovations around CNN architectures and loss functions including, both proprietary and published in the academic literature ${ }^{1}$, may yet produce further gains. Even without that possibility, the results imply that prospective end-users should establish whether installed algorithms pre-date the clevelopment of the prototypes evaluated here and inquire with suppliers on availability of the latest versions. The gains mean that searches that had previously failed to yield candidates may now do so, such that unsolved cases could be revisited.

Given this impressive achievement-close to perfect recognition - an advocate might claim that frontal face recognition is a solved problem, a statement that should be refuted with the following context and caveats:

1 Algorithm accuracy spectrum: Many algorithms do not achieve the low error rates tabulated above, and while many of those may still be useful and valuable to end-users, only the most accurate excel on poor quality images and those collected long after the initial enrollment sample.

- Versioning: While results for up to seven algorithms from each developer are reported here, the intra-provider accuracy variations are usually smaller than the inter-provider variations. That said different versions give order of magnitude fewer misses. Some developers demonstrate speed-accuracy tradeoffs ${ }^{2}$.

See Figs. 17, 18.

[^0]Q Quality: The low error rates here are attained using mostly excellent cooperative live-capture mugshot images collected with an attendant present. Recognition in other circumstances, particularly those without a dedicated photographic environment and human or automated quality control checks, will lead to declines in accuracy. This is documented here for poorer quality webcam images and unconstrained "wild" images.

- Low similarity scores: In thousands of cases the correct gallery image is returned at rank 1 but its similarity score is nevertheless low, below some operationally required score threshold. This does not matter when face recognition is used for "lead generation" in investigational applications because human reviewers are specifically required to review potentially long candidate lists and the threshold is effectively 0 . In applications where search volumes are higher and labor is not available to review the results from searches, a higher threshold can be applied. This reduces the length of candidate lists and false positive identification rates at the expense of increased false negative miss rates. The tradeoff between the two error rates is reported extensively later.

D Population size: As the number of enrolled subjects grows, some mates are displaced from rank one, decreasing accuracy. As tabulated later for N up to 12 million, false negative rates generally rise slowly with population size.

- Database integrity: An operational error rate should be added to all false negative rates in this report reflecting the proportion of images in a real database that are un-matchable. Such anomalies arise from images that: do not contain a face; include multiple persons; cannot be decoded; are rotated by 90° or 180°; depict a face on clothing; and others introduced by a long tail of various clerical errors. While the mugshot trials in this report have been constructed to minimize such effects, they are a real problem in actual operations.

D Threshold-based accuracy: Recognition accuracy is very strongly dependent on the algorithm and, more generally, on the developer of the algorithm. False negative error rates in a particular scenario range from a few tenths of one percent to beyond fifty percent. This is tabulated exhaustively later: For example Table 22 shows accuracy across datasets. The inset figure here compares algorithms on mugshot searches in a consolidated gallery of 12 million subjects and 26.1 million photos. In positive or negative identification applications, a score threshold is set to limit the rate at which non-mate searches produce false positives. This has the consequence that some mated searches will report the mate below threshold, i.e. a miss, even if it is at rank 1. The utility of this is that many non-mated searches will usually not return any candidate identities at all. As the

Figure 1: Miss rates across the false positive range

[^1]inset error-tradeoff characteristic
shows, investigational miss rates on the right side are very low but then rise steadily (in the center region) as threshold is increased to support "lights-out" applications, and ultimately rise quickly (left side) as discussed below. Thus, if we demand that just one in one thousand non-mate searches produce any false positives, the most accurate algorithm there (NEC-3) would fail on $7,9 \%$ of mated searches. Even though the graph shows results for the most accurate algorithms, all but two would fail to find the mate in more than 10% of mated searches. While the NEC algorithm produces a relatively flat error tradeoff until the threshold is raised to limit false positives to about 1 in 400 non-mated searches ${ }^{3}$
Thereafter, as the threshold is raised to further reduce false positives, miss rates rise rapidly. This means that low false positive identification rates are inaccesible with these algorithms, a result that does not apply for ten-finger identification algorithms. The rapid rise occurs because the lower mate scores are mixed with very high non-mate scores, the low scores from poor image quality and ageing, the high non-mates from the presence of lookalikes persons (doppelgangers), twins (discussed next) and, ultimately, the presence of a few unconsolidated subjects i.e. persons present under multiple IDs.

D False positives from twins: By enrolling 640000 mugshots, adding photos of one twin, and then searching photos of those subjects and their twin the inset figure shows, for one typical algorithm, the similarity is generally greater when searching twins against themselves (A) than when searching twins against their sibling (B) but very often still above even stringent thresholds i.e those corresponding to one in one thousand searches producing a false positive. Thus twins will very often produce a high-scoring non-match on a candidate list and a false alarm in an online identification system. The plot shows that some fraternal twins are correctly rejected at those thresholds - these are largely from different sex twins (at center). Figure 21 shows substantially similar behavior for all algorithms tested. In an investigative search, a twin would typically appear at rank 1 , or rank 2 if their sibling happened to also be the gallery Twins (and triplets etc.) constituted 3.3\%

Figure 2: Intra- and inter-twin scores of all live births [17] in recent years ${ }^{4}$, and because that number is higher today than when the individuals in current adult databases were born, the false positives that arise from twins are now, and will increasingly be, an operational problem. Relative to the United States, twins are born with considerable regional variation. For example they are much less common in East Asia, and much more common in Sub-Saharan Africa [22]. The presence of twins in the mugshot database is inevitable given its size, around 12.3 million people. As this is not an insignificant sample of the domestic United States population, people with other familial ties will be present also. The data was collected over an extended period and because location information is not available, we are unable to estimate the proportion of the domestic population that is present in the dataset. However, if we assume twins are neither more or less disposed to arrest than the general population, we can estimate that hundreds of thousands of individuals in the dataset are twins. This will affect false positive rates because we randomly set aside 331254 individuals for nonmate searches, and some propertion of those will be twins with siblings in the gallery.

[^2]

DFalse negatives from ageing: A large source of error in long-run applications where subjects are not re-enrolled on a schedule is ageing. This is a function of the time elapsed between photographs. Change in facial appearance causes recognition similarity scores to decline such that over the longer term, accuracy will decline. All faces age and while this usually proceeds in a graceful and progressive manner, drug use can accelerate this [30]. Elective surgery may be effective in delaying it although this has not been formally quantified with face recognition. As ageing is essentially unavoidable, it can only be mitigated by scheduled re-capture, as in passport re-issuance. To quantify ageing effects, we used the more accurate algorithms to enroll the earliest image of 3.1 million adults and then search with 10.3 million newer photos taken up to 18 years after

Algorithen.	Metric FNIR@	(0,2]	(2,4]	(4,6$]$	16.81	$(8,10]$	(19,12]	(12,14]	$(14,18]$
nec-2	Rank = 1	0.3	0.4	0.4	0.4	0.4	0.5	0.6	0.4
microsoft-4	Rank = 1	03	0.5	0.6	0.7	09	1.0	1,3	1.6
yatu-4	Razk = 1	0.6	0.8	0.8	0.8	0.9	1.1	1.5	2.1
everai-3	Kark = 1	0.5	0.7	0.9	1.1	1.3	1.5	1.8	2.2
idemia-4	Rark = 1	1.1	1.5	1.9	23	2.8	3.1	3.7	5.1
cogent-3	Rank $=1$	0.8	1.1	1.3	1.5	1.7	1.9	2.4	3.1
cogritec-2	Rank = 1	1.0	1.4	1.7	2.0	2.4	2.6	3.1	3.9
nee-2	FPIR $=0.001$	0.7	0,9	1.1	1.3	1.5	1.7	2.1	2.7
Hicrosoft-4	FPIR $=0.001$	2.7	4.7	7.2	10.1	12.9	16.1	20.5	25.9
yitu-4	FPIR $=0.001$	1.2	2.0	3.1	4.7	6.7	9.6	14,2	20.1
everai-3	EPIR $=0,001$	3.5	6.2	9.3	12.9	16.2	19.6	24,1	29.2
idernià-4	FPIR $=0,001$	3.7	5,9	8.3	11.0	13.4	15.8	19.1	24.8
cogent-3	FPIR $=0.001$	58	9.7	14.2	19.2	23.8	28.4	34.4	42.1
cognitec-2	FPIR $=0.001$	5.2	8.8	12.7	17.1	21.0	24.6	29.2	35.3

Table 2: Impact of ageing on accuracy. the the initial enrollment photo. In the inset table, accuracy is seen to degrade progressively with time, as mate scores decline and non-mates displace mates from rank 1 position. More accurate algorithms tend to be less sensitive to ageing. The more accurate algorithms give fewer errors after 18 years of ageing than middle tier algorithms give after four. Note also we do not quantify an ageing rate - more formal methods [2] borrowed from the longitudinal analysis literature have been published for doing so (given suitable repeated measures data).

See Figures 62,72 and 77.

- Image quality matters: Poor quality photographs undermine recognition, either because the imaging system is poor (lighting, camera, etc.) or because the subject mis-presents to the camera (head orientation, facial expression, occlusion, etc.). Imaging problems can be mitigated by design i.e. ensuring adherence to long-standing face image capture standards. Presentation problems, however, must be detected at capture time, ejther by the photographer, or by an automated system, and recapture performed. The most accurate algorithms in FRVT are highly tolerant of image quality problems. This derives from the invariances afforded by CNN-based algorithms, and this is the fundamental reason why accuracy has improved since 2013. For example, the Microsoft algorithms are can match many profileview images to frontal mugshots - see Figures 100 and 102. As the inset table shows, rank-1 false negative identification rates are much higher with wild images than webcams and, in turn, mugshots. Further, even with the most capable algorithms, comparison scores are lower with unconstrained images, so that when

Algorither	Metric FINTR	tild	Mugshot	Webcam
cognitec-3	Rank $=1$	5.1	0.9	2.5
everai-3	Rank = 1	3.8	0.5	1.9
idemila-5	Rank $=1$	4.4	1.1	3.9
microsoft 5	Rank $=1$	3.3	03	1.1
nees 3	Rank = 1	8.8	0.3	1.0
ntechab-6	Rank = 1	3.8	0.6	1.7
Fisionilabs-5	Rank=1	4.3	0.4	1.9
yitu-1	Rank - 1	4.4	0.4	0.8
cognitec 3	FPIR $=0.01$	32.5	2.8	10.0
everai-3	$\mathrm{PPIR}=0.01$	35.7	1.8	6.0
idemia-s	FPIR $=0.01$	34.0	28	10,2
microsoft-5	FPIR $=0.01$	34.4	1.2	4.1
nee-3	PPMR $=0.01$	38.0	0.4	1.3
ntechlab-6	$F P I K=0.01$	38.1	2.1	5.9
visiondabs-5	FPIR $=0.01$	34.4	2.2	8.7
yitu-1	FPIR $=0.01$	30.6	0.7	1.7

Table 3: Impact of image quality on accuracy. (high) thresholds are necessary to limit false positives, here to 1 in 100 searches, error rates are very high. Such figures should guide prospective users of face recognition to consider whether face recognition can meet a formal written accuracy requirement.
\triangleright Accuracy in large populations: This report documents identification accuracy in galleries containining up to 12 million people and 26.1 million images. False negative rates climb very slowly as population size increases. For the most accurate algorithm, NEC-2, when searching a database of size 640000 , about 0.26% of searches fail to produce the

[^3]ENIR $(N, R, T)=$ False neg. identification rale
FPIR $(\mathbb{N}, T)=$ False pos. identification tale
$\mathrm{N}=$ Num. entolled subiects
$T=$ Threshold
$\mathrm{T}=0 \rightarrow$ Investifation
17.24.52
$\mathrm{R}=$ Num. candidates examined
$T>0 \rightarrow$ Identification
correct mate as its best hypothesized identity. In a database of 12000000 this rises to just 0.31%. This benign growth in miss rates is fundamentally the reason for the utility of face recognition in large scale one-to-many search applications. See Table 12 and Figure 22.

The reason for this is that as more identities are enrolled into an database, the possibility of a false positive increases due to lookalike faces that yield extreme values from the right tail of the non-mate score distribution. However, these scores are lower than most mate scores such that when an identificationalgorithm is configured with a threshold of zero (so human adjudication is always necessary), rank-one identification miss rates scale very favorably with population size, N , growing slowly, approximately as a power law, $a N^{b}$ with $b \ll 1$. This dependency was first noted in 2010, Depending on the algorithm, the exponent b for mugshot searches is $10 w$, around 0.06 for the some of the more accurate algorithms with up to 12 million identities.

See Table 12.
In any case, variations in accuracy with increasing population size are small relative to both ageing and algorithm choice.

See Figure 20.

- Utility of adjudicating long candidate lists: In the regime where a system is configured witha threshold of zero, and where human adjudication is always necessary, the reviewer will find some mates quite far down candidate lists. This usually occurs because either the probe image or its corresponding enrolled mate image have poor quality, or large time-lapse. The accuracy benefits of traversing say 50 candidates versus just the first one is broadly a reduction in error by up to a factor of two.

See Figure 30 and compare Tables 12 and 13 .
However, accuracy from the leading algorithm is now so high - mates that in 2013 were placed at rank >1, are now at rank 1 - such that reviewers can expect to review substantially fewer candidates. Note, however, for the proportion of searches where there is no mate, reviewers might still examine all candidates, fruitlessly. This report does not address the issue of human error in adjudicating candidates produced in one-to-many searches.

- Utility of enrolling multiple images per subject: We run three kinds of enrollment: First, by enrolling just the most recent image; second by creating a single template from a person's full lifetime history of images; and third by enrolling multiple images of a person separately, as though under different identities. The overall effect is that the enrollment of multiple images yields as much as a factor of two lower miss rates. This occurs due to higher information content and because the most recent image may sometimes be of poorer quality than historical images.

See Table 12.
Gains depend on the number of available images: FNIR drops steadily. Some algorithms reduce FPIR or maintain it the desirable behaviors - but others give higher false positive rates. See Figures leading up to

Figure 87.
\square Reduced template sizes: There has been a frend toward reduced template sizes, i.e. a smaller feature representation of an image. In 2014, the most accurate algorithm used a template of size 2.5 KB ; the figure in 2018 is around 1600 bytes. Close competitors produce templates of size 256, 364, 512, and about 2 KB bytes. In 2014, the leading competitors had templates of size 4 KB to 8 KB . Some algorithms, when enrolling more than one image of a person, produce a template whose size is independent of the number of images given to the algonthm. This can be achieved by selecting a "best" image, or by integrating (fusing) information from the images.

See Table 16.

- Template generation times: Template generation times, as measured on a single cirea-2016 server processor core
${ }^{5}$, vary from below 20 milliseconds up to nearly 1 second. This wide variation across developers may be relevant to end-users who have high-volume workflows. There has not been a wide downward trend since 2014. Note that speed may be expedited over the figure reported here by exploiting new vector instructions on recent chips. Note that GPLIs were not used and, while indispensable for training CNNs, are not necessary for feeding an image forward through a network.

See Table 16.
DSearch duration and scalability: Template search times, as measured on circa-2016 Intel server processor cores,

[^4]| 2019/09/11 | FNIR(N,R,T) | False neg identification rate | $\mathrm{N}=$ Num. enrelled subiects | $T=$ Thueshold | $\mathrm{T}=0 \rightarrow$ Investization |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1724:52 | FPIR(N. T$)=$ | False pos. identification rate | $\mathrm{R}=$ Num. candidates examined | T-Theshor | $T \leq 0 \rightarrow$ Identification |

vary massively across the industry: For a database of size 1 million subjects, and the more accurate implementations, durations range from below 1 to 500 milliseconds, with other less accurate algorithms going much slower still. Several algorithms exhibit sublinear search time i.e, the duration does not double with a doubling of the enrolled population size, N. This was noted also in 2014. This has improved in 2018, however, such that close-to-logarithmie growth is evident for several developers' algorithms and extremely fast search. The consequence of this is that as N increases even the fastest linear algorithm (NEC-3) will quickly become much slower than the strongly sublinear algorithms. For the Dermalog-5 algorithm, search of a template against a database of $\mathrm{N}=12$ million images takes 850 microseconds on a single core of a contemporary CPU. That number is faster than any other algorithm even with the smallest gallery we tested ($\mathrm{N}=640000$).

See Table 6 and Figure 111.
\triangleright Accuracy gains June - October 2018 NTST Interagency Report 8238 documented massive gains from 2013 to 2018. This report shows most developers achieved gains over the four month interval between June and October 2018. For a set of 12 million subjects enrolled with their most recent mugshot image, the inset table shows, for selected algorithms, the proportion of searches where mates are not returned against the given criteria (column 2). The result is that substantial reductions in false negatives - by a factor of two or more - were realized by algorithms submitted by Cogent, Cognitec, Dermalog, Hikvision, Innovatrics, NEC, Rank One, Shaman, Tiger-IT, and Vigilant Solutions. In particular, in this same time period one developer, NEC, which had produced broadly the most accurate algorithms in 2010 and 2013, submitted algorithms that are substantially more accurate than their June 2018 versions, and on many measures are now the most accurate. A number of other developers produced slightly less accurate implementations.

Application	Metric	Algorithun		FNIR
Mades Magshot	Miss rate	Date	Name	
Investigation	at Rank $=1$	2018-JUN	NEC-0	3.20\%
Investigation	at Rank=1	2018-0CT	NEC-2	0.31\%
vestigation	at Rank=1	$2018-\mathrm{JUN}$	Microsoft-4	0.45\%
Investigation	at Rank=1	$2018-0 \mathrm{CT}$	Microsolt-5	0.52\%
Investigation	at Rank=1	2018-IUN	atu-2	0.55°
Investigation	at Rank $=1$	2018-OCT	itu	0.55
Itentification	at EPIR=0.001	N	NEC-0	200\%
Identification	at EPIR-0.001	2018-OCT	NEC-3	5.8\%
Idertification	at $\mathrm{EPIR}=0,001$	2018-JUN	Microsoft-4	15.8\%
Identification	at FPIR=0.001	$2018-0 C T$	Microsolt-6	15.6\%
Identification	at FPIR=0.001	$2018-\mathrm{TIN}$	Yitu-2	12.4\%
Identification	at FPIR=0.001	2018-OCT	Vitu-5	11.1\%

Table 4: Accuracy gains since June - October 2018
See Tables 16 and 19, and Figure 19.

- Non-technical considerations: Recognition accuracy is likely the most important technical indicator for an algorithm. But even among the more accurate developers accuracy, template size, and resource consumption vary widely: This, incidentally, implies that technological diversity remains, that there is no consensus on approach and that algorithms are not commoditized. But beyond the performance statements in this report, face recognition outcomes in complete systems will be influenced by things like code and model size, software maturity, extensibility, reliability, ease of integration and maintenance, cost, availability of monitoring tools, and support for human review of true and false matches using, for example, capable graphical user interfaces.
DConclusions: As with other biometrics, accuracy of facial recognition implementations varies greatly across the industry. Absent other performance or economic parameters, users should prefer the most accurate algorithm. Note that accuracy, and algorithm rankings, vary somewhat with the kinds of images used and the mode of operation: investigation with zero threshold; or identification with high threshold.
\square Supplementary Data: This document is accompanied by a supplement that includes a three page report for each of the algorithms evaluated. Each report includes various performance plots pertinent to the particular algorithm under test. The supplement, which currently runs to more than 600 pages, is available from the same webpage as this report.

Release Notes

FRVT Activities: NIST restarted FRVT's one-to-many track in February 2018, inviting participants to send up to seven prototype algorithms. Since February 2017 , NIST has been evaluating one-to-one verification algorithms on an ongoing basis. This allows developers to submit updated algorithms to NTST at any time but no more frequently than four calendar months. This more slosely aligns development and evaluation schedules. Results are posted to the web within a few weeks of submission. Details and full report are linked from the Ongoing FRVI site.
FRVT Reports: The results of the FRVT appear in the series NIST Interagency Reports tabulated below. The reports were developed separately and released on different schedules. In prior years NIST has mostly reported FRVT results as a single report; this had the disadvantage that results from completed sub-studies were not published until all other studies were complete.

Date	Link	Tille	No.
$2014-03-20$	PDF	FRVT Performance of Automated Age Estimation Algorithms	7995
$2015-04-20$	PDF	Face Recognition Vendor Test (FRVT) Performatice of Automated Gender Classification Algorithus	8052
$2014-05-21$	PDF	FRVT Performance of face identification algorithms	8009
$2017-03-07$	PDF	Face In Video Evaluation (FIVE) Face Recognition of Non-Cooperative Subjects	8173
$2017-11-23$	PDF	The 2017 IARPA Face Recognition Prize Challenge (FRPC)	8197
$2018-04-13$	WWW	Ongoing Face Recognition Vendor Test (FRVI)	Draft

Details appear on pages linked from https://www, nist. gov/programs-projects/face-projects.
Appendices: This report is accompanied by appendices which present exhaustive results on a per-algorithm basis, These are machine-generated and are included because the authors believe that visualization of such data is broadly informative and vital to understanding the context of the report.
Typesetting. Virtually all of the tabulated content in this report was produced automatically. This involved the use of scripting tools to generate directly type-settable ${ }^{A T} \mathrm{E}_{\mathrm{E}}$ X content. This improves timeliness, flexibility, maintainability, and reduces transcription errors.
Graphics: Many of the Figures in this report were produced using the ggplot2 package running under R, the capabilities of which extend beyond those evident in this document.

Contents

Acknowledgments 1
Disclaimer 1
Executive Summary 2
Scope and Context 3
Technical Summary 6
Release Notes 12
1 Introduction 14
2 Evaluation datasets 14
3 Performance metrics 20
4 Results 36
Appendices 65
A Accuracy on large-population FRVT 2018 mugshots 65
B Effect of time-lapse: Accuracy after face ageing 110
C Effect of enrolling multiple images 138
D Accuracy with poor quality webcam images 145
E Accuracy for profile-view to frontal recognition 155
F Accuracy when identifying wild images 159
G Search duration 170
H Gallery Insertion Timing 177

1 Introduction

One-to-many identification represents the largest market for face recognition technology. Algorithms are used across the world in a diverse range of biometric applications: detection of duplicates in databases, detection of fraudulent applications for credentials such as passports and driving licenses, token-less access control, surveillance, social media tagging, lookalike discovery, criminal investigation, and forensic clustering.

This report contains a breadth of performance measurements relevant to many applications. Performance here refers to accuracy and resource consumption. In most applications, the core accuracy of a facial recognition algorithm is the most important performance variable. Resource consumption will be important also as it drives the amount of hardware, power, and cooling necessary to accommodate high volume workflows. Algorithms consume processing time, they require computer memory, and their static template data requires storage space. This report documents these variables.

1.1 Open-set searches

FRVT tested open-set identification algorithms. Real-world applications are almost always "open-set", meaning that some searches have an errolled mate, but some do not. For example, some subjects have truly not been issued a visa or drivers license before; some law enforcement searches are from first-time arrestees ${ }^{6}$. In an "open-set" application, algorithms make no prior assumption about whether or not to return a high-scoring result, and for a mated search, the ideal behaviour is that the search produces the correct mate at high score and first rank. For a non-mate search, the ideal behavior is that the search produces zero high-scoring candidates.

Too many academic benchmarks execute only closed-set searches. The proportion of mates found in the rank one position is the default accuracy metric. This hit rate metric ignores the score with which a mate is found; weak hits count as much as strong hits. This ignores the real-world imperative that in many applications it is necessary to elevate a threshold to reduce the number of false positives.

2 Evaluation datasets

This report documents accuracy for four kinds of images - mugshots, webcam, profiles and wild - as described in the following sections.

2.1 Mugshot images

The main mugshot dataset used is referred to as the FRVT 2018 set. "This set was collected over the period 2002 to 2017 in routine United States law enforcement operations. This set has been extracted from a larger operational parent set by excluding non-face images, and setting aside webcam and profile-view images, for use in separate tests.
NIST Interagency Report 8238 includes a comparison of this set of mugshots with the smaller and easier sets of mugshots used in tests run in 2010 and 2014.
${ }^{5}$ Operationally dosed-set applications are rare because it is usually not the case that all searches have an enrolled mate. One counter-example, however, is a cruise ship in which all passengers are entolled and all searches should produce exactly one identity. Another example is forensic identification of dental records from an aircraft crash.

D
Mugshots: Mugshots comprise about 86% of the database. They have reasonable compliance with the ANSI / NIST ITL1-2011 Type 10 standard's subject acquisition profiles levels $10-20$ for frontal images [28]. The most common departure from the standard's requirements is the presence of mild pose variations around frontal - the images of Figure 3 are typical. The images vary in size, with many being 480×600 pixels with JPEG compression applied to produce filesizes of between 18 and 36 KB with many images outside this range, implying that about 0.5 bits are being encoded per pixel.
\triangleright Profile images: Profile-view images have been collected in law enforcement for more than 100 years, as human capability is improved with orthogonal information. The profile images used in this report were collected during the same session as the frontal mugshot photograph, in the same standardized photographic setup. These would not therefore be used with automated face recognition. A small subset, 200000 images, were set aside for testing.
\triangle Webcam images: The remaining 14% of the images were collected using an inexpensive webcam attached to a flexible operator-directed mount. These images are all of size 240×240 pixels, that are in considerable violation of most quality-related clauses of all face recognition standards. As evident in the figure, the most common defects are non-frontal pose (associated with the rotational degrees of freedom of the camera mount), low contrast (due to varying and intense background lights), and poor spatial resolution (due to inexpensive camera optics) - see examples in Fig 4. The images are overly IPEG compressed, to between 4 and 7 KB , implying that only 0.5 to 1 bits are being encoded per color pixel.

Example images are shown in Figures 3, 4 and 5 These are drawn from NIST Special Database 32 which may be downloaded here.

These images were partitioned in galleries and probesets for the various experiment listed in Table 5.

Figure 3: Six mated mugshot pairs representative of the FRVT-2014 (LEO) and FRVT-2018 datasets. The images are collected live, i.e. not scanned from paper. Image source: NIST Special Database 32

Figure 5: [Profile views] The three images are a frontal enrollment, subsequent frontal probe, and same-session ninety degree profile view. While collection of both frontal and profile views has been typical in law enforcement for more than a century, the recognition of profile to frontal views has essentially been impossible. However, reasonbly high accuracy results is now possible - see section E.

Figure 4: Twelve webcam images representative of probes against the FRVT-2018 mugshot gallery. The first eight images are four mated pairs. Such images present challenges to recognition including pose, non-uniform illumination, low contrast, compression, cropping, and low spatial sampling rate. Image source: NIST Special Database 32

2.2 Unconstrained "wild" images

In addition to portrait-styled mugshots, algorithms were also evaluated on a "wild" datasetcomposed of non-cooperative and unconstrained photojournalism and amateur photography imagery. The images are closely cropped from the parent images as shown in Figure 6. A portion of the images are collected by professional photographers and as such are captured, and selected, to not exhibit exposure and focus problems. Some of the photos were downloaded from websites with substantial amateur photographer imagery, which may contain images that do exhibit exposure and focus problems. Resolution varies widely as these images were downloaded from the internet with varying resampling and compression practices. The primary difficulties for face recognition is unconstrained yaw and pitch pose variation, with some images extending to profile view. Additionally faces can be occluded, including by hair and hands.

The images are cropped prior to passing them to the algorithm. The cropping is done per human-annotated rectangular bounding boxes. The algorithm must further localize the face and extract features. In many cases, there were multiple images of the subject provided to the algorithm, and the output was a single template representation of the subject.
$N_{P^{\prime}}=332574$ subjects were searched against two galleries, where the number of enrolled subjects in each gallery were
$N_{G 1}=1106777$ and $N_{G 2}=1107778$. Both gallery and search images were composed of unconstrained wild imagery.

$\begin{aligned} & \text { 2019/09/11 } \\ & 17: 24: 52 \end{aligned}$	$\operatorname{FNIR}(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ $\operatorname{FPIR}(\mathbb{N}, 1)=$	False neg. identification rate False pos. identification rate	$\mathrm{N}=$ Num. enrolled subjects $\mathrm{R}=$ Num. candidates examined	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation $\mathrm{I}>0 \rightarrow$ Identification
$17: 24: 52$	$\operatorname{FPIR}(\mathrm{N}, \mathrm{I})=$	False pos. identification rate	$\mathrm{R}=$ Num. candidates examined		$\mathrm{T}>0 \rightarrow$ Identification

Figure 6: Examples of "in the wild" stills. The top row gives the full original images; the second row gives the manually specified face region that is cropped and passed to the algorithms. The source images in this figure are attributed to, from left, Rita MoInr, Eva Rinaldi, and Gage Skidmore under the [cc-by-sa-2.5], [cc-by-sa-2.0], [cc-by-sa-3.0] creative commons licenses respectively.

2.3 Enrollment strategies

Many operational applications include collection and enrollment of biometric data from subjects on more than one occasion. This might be done on a regular basis, as might occur in credential (re-)issuance, or irregularly, as might happen in a criminal recidivist situation [4]. The number of images per person will depend on the application area. In civil identity credentialing (e.g. passports, driver's licenses), the images will be acquired approximately uniformly over time (e.g. ten years for a passport). While the distribution of dates for such images of a person might be assumed uniform, a number of factors might undermine this assumption ${ }^{7}$. In criminal applications, the number of images would depend on the number of arrests. The distribution of dates for arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution but is recognized to be more complicated ${ }^{8}$.

In any case, the 2010 NIST evaluation of face recognition showed that considerable accuracy benefits accrue with retention and use of all historical images [6].

To this end, the FRVT API document provides $K \geq 1$ images of an individual to the enrollment software. The software is tasked with producing a single proprietary undocumented "black-box" template ${ }^{9}$ from the K images. This affords the algorithm an ability to generate a model of the individual, rather than to simply extract features from each image on a sequential basis.

As depicted in Figure 7, the i-th individual in the FRVT 2018 dataset has K_{i} images. These are labelled as x_{k} for $k=1 \ldots K_{i}$ in chronological order of capture date. To measure the utility of having multiple enrollment images, this report evaluates three kinds of enrollment:

[^5]| 2019/09/11 | FNIR $(\mathbb{N}, \mathrm{R}, \mathrm{T})=$ | Fal | $\mathrm{N}=$ | $T=$ Threshold | T $=0 \rightarrow$ Investigation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17:24:52 | $\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$ | False pos. identification rate | $R=$ | | $\mathrm{T}>0 \rightarrow$ Identification |

Image				
Encounter	1	\ldots	$K_{i}-1$	K_{i}
Capture Time	T_{l}	\ldots	$T_{K_{i}-1}$	$T_{K_{i}}$
Role RECENT	Not used	Not used	Enrolled	Search
Role DIFETIME	Enrolled	Enrolled	Enrolled	Search

Figure 7: Depiction of the "recent" and "ifetime" enrollment types. Image source: NIST Special Database 32
\triangle Recent: Only the second most recent image, $x_{K_{j}-1}$ is enrolled. This strategy of enrollment mimics the operational policy of retaining the imagery from the most recent encounter. This might be done operationally to ameliorate the effects of face ageing. Obviously retaining only the most recent image should only be done if the identity of the person is trusted to be correct. For example, in an access control situation retention of the most recent successful authentication image would be hazardous if it could be a false positive.
Δ Lifetime-consolidated: All but the most recent image are enrolled, $x_{1} \ldots x_{K_{i}-1}$. This subject-centric strategy might be adopted if quality variations exist where an older image might be more suitable for matching, despite the ageing effect.
Δ Lifetime-unconsolidated: Again all but the most recent image are enrolled $x_{1} \ldots x_{K_{i-1}}$ but now separately, with different identifiers, such that the algorithm is not aware that the images are from the same face. This kind of event- or encounter-centric enrollment is very common when operational constraints preclude reliable consolidation of the historical encounters into a single identity. This aspect also prevents the recognition algorithm from a) building a holistic model of identity (as is common in speaker recognition systems) and b) implementing fusion, for example template-level fusion of feature vectors, or post-search score-level fusion. The result is that searches will typically yield more than one image of a person in the top ranks. This has consequences for appropriate metrics, as detailed in section 3.2.1

NIST first evaluated this kind of enrollment in mid 2018, and the results tables include some comparison of accuracy available from all three enrollment styles.

In all cases, the most recent image, $x_{K_{i}}$, is reserved as the search image. For the 1.6 million subject enrollment partition of the FRVT 2018 data, $1 \leq K_{i} \leq 33$ with $K_{i}=1$ in 80.1% of the individuals, $K_{t}=2$ in $13.4 \%, K_{i}=3$ in $3.7 \%, K_{i}=4$ in $1.4 \%, K_{i}=5$ in $0.6 \%, K_{i}=6$ in 0.3%, and $K_{i}>6$ is 0.2% for everyone else. This distribution is substantially dependent on United States recidivism rates.

We did not evaluate the case of retaining only the highest quality image, since automated quality assessment is out of scope for this report. We do not anticipate that such strategies will prove beneficial when the quality assessment apparatus is imperfect and unvalidated.

Figure 8: Enrollment strategies. The figure shows the three kinds of enrollment databases examined in this report. Image source: NIST Special Database 32

2019/09/11	FNIR (N, R, T) $=$	False neg. identification rate	$\mathrm{N}=$ Num, errolled subjects K	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow \text { Investigation }$
17:24:52	$\operatorname{FPIR}(\mathbb{N}, \mathrm{T})=$	False pos, identification rate	$\mathrm{R}=$ Num. candidates examined		$\mathrm{I}>0 \rightarrow$ Identification

ENIROLLMENI					SEARCH			
	TYPE 5EE	PCFTMAIT	N-SUBIECTS	N-MLAGES	MATE		NON-MATE	
	SECTION 2.3	FLIER			N-SUETECTS	N-IMAGES	N-SUBTECIS	N-TINAGES
Mugshot trials from enrollment of single images								
1	RECENT	NATURAL	640000	540000	154549	154549	331254	331254
2	RECENT	NATURAL	1600000	1600000				
3	RECENT	NATURAL	3000000	3000000				
4	RECENT	NATURAL	6000000	6000000				
5	RECENT	NATURAL	12000000	12000000				
Mugshot trials from enrollment of lifetime images								
6	CON30L	NATURAL	640000	1247331				
7	CONSOL	NATURAL	1600000	3351206				
8	CONSOL	NATURAL	3000000	6417057				
9	CONSOL	NATURAL	6000000	12976185				
10	CONSOL	NATUFAL	12000000	26107917				
11	UN-CONSGL	NATURAL	640000	1247331				
12	UN-CONSOL	NATUFAL	1600000	3351206				
Cross-domain								
13	MUCSFFOTSA	RDta 2			82106 WEBCAM	82106 WEECAD	331254 WEBCAM	331254 WEBCAM
Cross-view								
14	MUGSHOTS A	ROW 2			$\begin{aligned} & 100000 \\ & \text { PROFLLE } \end{aligned}$	$\begin{aligned} & 100000 \\ & \text { PROFILE } \end{aligned}$	$\begin{aligned} & 100000 \\ & \text { FROFILE } \end{aligned}$	$\begin{aligned} & 100000 \\ & \text { ERDFLLE } \end{aligned}$
Ageing								
17	QLDEST	NATUFAL	3068801	3068801	2853221	10951064	0	0

Table 5: Envollment and search sets. Each row summarizes one identification trial. Unless stated otherwise, all entries refer to mugshot images. The term "natural" means that subjects were selected without heed to demographics, i.e. in the distribution native to this dataset. The probe images were collected in a different calendar year to the enrollment image. Missing values in rows 2-12 are the same as in row 1 .

3 Performance metrics

This section gives specific definitions for accuracy and timing metrics. Tests of open-set biometric algorithms must quantify frequency of two error conditions:

D False positives: Type I errors occur when search data from a person who has never been seen before is incorrectly associated with one or more enrollees ${ }^{t}$ data.

D Misses: Type II errors arise when a search of an enrolled person's biometric does not return the correct identity.

Many practitioners prefer to talk about "hit rates" instead of "miss rates" - the first is simply one minus the other as detailed below. Sections 3.1 and 3.2 define metrics for the Type I and Type II performance variables.

Additionally, because recognition algorithms sometimes fail to produce a template from an image, or fail to execute a one-to-many search, the occurrence of such events must be recorded. Hurther because algorithms might elect to not produce a template from, for example, a poor quality image, these failure rates must be combined with the recognition error rates to support algorithm comparison. This is addressed in section 3.5.

Finally, section 3.7 discusses measurement of computation duration, and section 3.8 addresses the uncertainty associated with various measurements. Template size measurement is included with the results.

$2019 / 09 / 11$	FNIR(N, R, T) =	False neg identification rate	$\mathrm{N}=$ Num. enrelled subjects	$T=$ Thieshold	$\mathrm{T}=0 \rightarrow$ Investigation
17:24:52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos. identification rate	$\mathrm{R}=$ Num. candidates examined		$T>0 \rightarrow$ Identification

3.1 Quantifying false positives

It is typical for a search to be conducted into an enrolled population of N identities, and for the algorithm to be configured to return the closest L candidate identities. These candidates are ranked by their score, in descending order, with all scores required to be greater than or equal to zero, A human analyst might examine either all L candidates, or just the top $R \leq L$ identities, or only those with score greater than threshold, T. The workload associated with such examination is discussed later, in 3.6.

False alarm performance is quantified in two related ways. These express how many searches produces false positives, and then, how many false positives are produced in a search.
False positive identification rate: The first quantity, FPIR, is the proportion of non-mate searches that produce an adverse outcome:
$\operatorname{FPIR}(N, T)=\frac{\text { Num. non-mate searches where one or more enrolled candidates are returned with score at or above threshold }}{\text { Num. non-mate searches attempted. }}$
Under this definition, FPIR can be computed from the highest non-mate candidate produced in a search - it is not necessary to consider candidates at rank 2 and above, FPIR is the primary measure of Type 1 errors in this report.
Selectivity: However, note that in any given search, several non-mate may be returned above threshold. In order to quantify such events, a second quantity, selectivity (SEL), is defined as the number of non-mates returned on a candidate list, averaged over all searches.

$$
\begin{equation*}
\operatorname{SEL}(N, T)=\frac{\text { Num. non-mate enrolled candidates returned with score at or above threshold }}{\text { Num. non-mate searches attempted. }} \tag{2}
\end{equation*}
$$

where $0 \leq \operatorname{SEL}(\mathrm{N}, \mathrm{T}) \leq \mathrm{L}$. Both of these metrics are useful operationally. FPIR is useful for targeting how often an adverse false positive outcome can occur, while SEL as a number is related to workload associated with adjudicating candidate lists. The relationship between the two quantities is complicated - it depends on whether an algorithm concentrates the false alarms in the results of a few searches or whether it disburses them across many This was detailed in FRVT 2014, NTSTIR 8009. It has not yet been detailed in FRVT 2018.

3.2 Quantifying hits and misses

If L candidates are returned in a search, a shorter candidate list can be prepared by taking the top $R \leq L$ candidates for which the score is above some threshold, $T \geq 0$. This reduction of the candidate list is done because thresholds may be applied, and only short lists might be reviewed (according to policy or labor availability, for example). It is useful then to state accuracy in terms of R and T, so we define a "miss rate" with the general name false negative identification rate (FNIR), as follows:
$\operatorname{FNIR}(N, R, T)=\frac{\text { Num. mate searches with enrolled mate found outside top } \mathrm{R} \text { ranks or score below threshold }}{\text { Num. mate searches attempted. }}$
This formulation is simple for evaluation in that it does not distinguish between causes of misses. Thus a mate that is not reported on a candidate list is treated the same as a miss arising from face finding failure, algorithm intolerance of poor quality, or software crashes. Thus if the algorithm fails to produce a candidate list, either because the search

2019/09/11	ENIR(N, R, T)	False ney. identification rate	$N=$ Num. enrolled subiects	$T=$ Theshald	$\mathrm{T}=0 \rightarrow$ Investigation
17224.52	FPIR(N. T) $=$	False pos. identification rate	$\mathrm{R}=$ Num. candidates examined	T-	$T>0 \rightarrow$ Identififation

failed, or because a search template was not made, the result is regarded as a miss, adding to FNIR.
Hit rates, and true positive identification rates: While FNIR states the "miss rate" as how often the correct candidate is either not above threshold or not at good rank, many communities prefer to talk of "hit rates". This is simply the true positive identification rate(TPIR) which is the complement of FNJR giving a positive statement of how often mated searches are successful:

$$
\begin{equation*}
\operatorname{TPIR}(N, R, T)=1-\operatorname{FNIR}(N, R, T) \tag{4}
\end{equation*}
$$

This report does not report true positive "hit" rates, preferring false negative miss rates for two reasons. First, costs rise linearly with error rates. For example, if we double FNTR in an access control system, then we double user inconvenience and delay. If we express that as decrease of TPIR from, say 98.5% to 97%, then we mentally have to invert the scale to see a doubling in costs. More subtly, readers don't perceive differences in numbers near 100% well, becoming inured to the "high nineties" effect where numbers close to 100 are perceived indifferently:
Reliability is a corresponding term, typically being identical to TPIR, and often cited in automated (fingerprint) identification system (AFIS) evaluations.

An important special case is the cumulative match characteristic(CMC) which summarizes accuracy of mated-searches only. It ignores similarity scores by relaxing the threshold requirement, and just reports the fraction of mated searches returning the mate at rank R or better.

$$
\begin{equation*}
\mathrm{CMC}(N, R)=1-\operatorname{FNTR}(N, R, 0) \tag{5}
\end{equation*}
$$

We primarily cite the complement of this quantity, $\operatorname{FNIR}(N, R, O)$, the fraction of mates not in the top R ranks.
The rank one hit rate is the fraction of mated searches yielding the correct candidate at best rank, i.e. CMC(N, 1). While this quantity is the most common summary indicator of an algorithm's efficacy, it is not dependent on similarity scores, so it does not distinguish between strong (high scoring) and weak hits. It also ignores that an adjudicating reviewer is often willing to look at many candidates.

3.2.1 False negative rates for unconsolidated galleries

As detailed in section 2.3 a common type of gallery, here teferred to as the lifetime unconsolidate type, is populated with all images of an individual without any association between them. That is, the gallery construction algorithm is not provided with any ID labels that would support processing of a person's images jointly. This constrasts with the lifetime consolidate type where an algorithm may explicitly fuse features from multiple images of a person, or select a best image. In such cases, where the number of enrolled images is a random variable, we define two false negative rates as follows.

The first demands that the algorithm place any of the K_{i} mates in the top $R \geq 1$ ranks. The proportion of searches for which this does not occur forms a false negative identification rate:

$$
\begin{equation*}
\text { FNIR }_{\text {any }}(N, R, T)=1-\frac{\text { Num. mate searches where any enrolled mate is found in the top } \mathrm{R} \text { ranks and at-or-above threshold }}{\text { Num. mate searches attempted. }} \tag{6}
\end{equation*}
$$

The second demands that the algorithm place all K_{i} mates in the top $R \geq K_{i}$ ranks. The proportion of searches for

$\begin{aligned} & 2019 / 09 / 11 \\ & 17: 24: 52 \end{aligned}$	$\mathrm{FNIR}(\mathbb{N}, \mathrm{R}, \mathrm{T})=$ $\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False neg identification rate False pos. identification tate	$\mathrm{N}=\mathrm{Num}$. enrolled subjects $\mathrm{R}=\mathrm{Num}$. candidates examined	$\mathrm{T}=$ Thiteshold	$\mathrm{T}=0 \rightarrow$ Investigation $T>0 \rightarrow$ Identification

which this does not occur forms a false negative identification rate:
$\operatorname{FNIR}_{\text {all }}(N, R, T)=1-\frac{\text { Num. mate searches where all enrolled mates are found in the top } \mathrm{R} \text { ranks and at-or-above threshold }}{\text { Num. mate searches attempted. }}$
Placing all mates in the top ranks is a more difficult task than correctly retrieving any image, so it holds that: FNIR $_{\text {all }} \geq$ FNIRany. This is evident in the results presented for November 2018 algorithms in Tables starting at 25.

The information retrieval community might prefer to compute and plot precision and recall; this is a valid approach, but we advance the two metrics above because they relate to our normal definition of consolidated FNTR, and they cover the two extreme use-cases of wanting any hit vs, all hits.

3.3 DET interpretation

In biometrics, a false negative occurs when an algorithm fails to match two samples of one person a Type II error. Correspondingly, a false positive occurs when samples from two persons are improperly associated a Type 1 error.

Matches are declared by a biometric system when the native comparison score from the recognition algorithm meets some threshold. Comparison scores can be either similarity scores, in which case higher values indicate that the samples are more likely to come from the same person, or cissimilarity scores, in which case higher values indicate different people. Similarity scores are traditionally computed by fingerprint and face recognition algorithms, while dissimilarities are used in iris recognition. In some cases, the dissimilarity score is a disfance possessing metric properties. In any case, scores can be either mate scores, coming from a comparison of one persons samples, or nonmate scores, coming from comparison of different persons samples.
The words "genuine" or "authentic" are synonyms for mate, and the word "impostor" is used as a synonym for nonmate. The words "mate" and "nonmate" are traditionally used in identification applications (such as law enforcement search, or background checks) while genuine and impostor are used in verification applications (such as access control).

An error tradeoff characteristic represents the tradeoff between Type Џ and Type I classification errors. For identification this plots false negative vs. false positive identification rates i.e. FNIR vs. FPIR parametrically with T. Such plots are often called detection error tradeoff (DET) characteristics or receiver operating characteristic (ROC). These serve the same function - to show error tradeoff - but differ, for example, in plotting the complement of an error rate (e.g. TPIR = 1 - FNIR) and in transforming the axes, most commonly using logarithms, to show multiple decades of FPIR. More rarely, the function might be the inverse of the Gaussian cumulative distribution function.
The slides of Figures 9 through 15 discuss presentation and interpretation of DETs used in this document for reporting face identification accuracy. Further detail is provided in formal biometrics testing standards, see the various parts of ISO/IEC 19795 Biometrice Testing and Reporting. More terms, including and beyond those to do with accuracy, appear in ISO/IEC 2382-37 Information technology - Vocabulary - Part 37: Harmonized biometric vocabulary.

Figure 9: DET as the primary performance reporting mechanism.

1：N FNIR．
Proportion of
mate searches
not yielding
mate above
threshold，T．
See ISO／IEC
19795－1

DET Properties and Interpretation 2 ：： Operational uses－cases drive threshold policy

C：Criminal investigation，where
1．Volume of searches is tiny，say one photo from a bank robbery surveillance camera
2．Prior probability of a mate may be high，e．g． ＂insider job＂in hotel room theft．
3．Reviewer labor is high and sufficient．

Figure 10：DET as the primary performance reporting mechanism．

Figure 11: DET as the primary performance reporting mechanism.
Low FPIR values achieved
with figher, Le more
stringent thresholds

- D. Michalski et al. The impoct of Ageing on Focial Comporisons with images of Children conducted by Humans and Automoted Systems January 2017 Proc. Soc. for Applied Research in Memory and Cognition, Sydney, Aus.

FPIR. Proportion of non-mated searches yielding any candidates above threshold, T . See ISO/IEC 19795-1

Figure 13: DET as the primary performance reporting mechanism.

Figure 16: DET as the primary performance reporting mechanism.

3.4 Best practice testing requires execution of searches with and without mates

FRVT embeds $1: N$ searches of two kinds: Those for which there is an enrolled mate, and those for which there is not. The respective numbers for these types of searches appear in Table 5. However, it is common to conduct only mated searches ${ }^{16}$. The cumulative match characteristic is computed from candidate lists produced in mated searches. Even if the CMC is the only metric of interest, the actual trials executed in a test should nevertheless inclucle searches for which no mate exists. As detailed in Table 5 the FRVT reserved disjoint populations of subjects for executing true non-mate searches.

3.5 Failure to extract features

During enrollment some algorithms fail to convert a face image to a template. The proportion of failures is the failure-to-enroll rate, denoted by FTE. Similarly, some search images are not converted to templates. The corresponding proportion is termed failure-to-extract, denoted by FTX.

We do not report FTX because we assume that the same underlying algorithm is used for template generation for enrollment and search.

Failure to extract rates are incorporated into FNIR and FPIR measurements as follows.

- Enrollment templates: Any failed enrollment is regarded as producing a zero length template. Algorithms are required by the API [J0] to transparently process zero length templates. The effect of template generation failure on search accuracy depends on whether subsequent searches are mated, or non-mated: Mated searches will fail giving elevated FNIR; non-mated searches will not produce false positives so, to first order, FPIR will be reduced by a factor of 1 -FTE.

Search templates and 1:N search: In cases where the algorithm fails to produce a search template from input imagery, the result is taken to be a candidate list whose entries have no hypothesized identities and zero score. The effect of template generation failure on search accuracy depends on whether searches are mated, or nonmated: Mated searches will fail giving elevated FNIR; Non-mated searches will not produce false positives, so FPIR will be reduced. Thus given a measurement of false negative and positive rates made over only those where failures-to-extract did not occur, those rates-call them FNIR † and FPIR † - could be adjusted by an explicit measurement of FTX as follows

$$
\begin{gather*}
\mathrm{FNIR}=\mathrm{FTX}+\left(1-\mathrm{FIX}^{2}\right) \mathrm{FNIR}^{\dagger} \tag{8}\\
\mathrm{FPIR}=\left(1-\mathrm{FTX}^{\dagger}\right) \mathrm{FPIR}^{\dagger} \tag{9}
\end{gather*}
$$

This approach is the correct treatment for positive-identification applications such as access control where cooperative users are enrolled and make attempts at recognition. This approach is not appropriate to negative identification applications, such as visa fraud detection, in which hostile individuals may attempt to evade detection by submitting poor quality samples. In those cases, template generation failures should be investigated as though a false alarm had occurred.

[^6]| 2019/09/11 | ENIR (N, R, T) $=$ | False neg identification rate | $\mathrm{N}=$ Num. enrolled subjects | $T=$ Theshold | $\mathrm{T}=0 \rightarrow \text { Investigation }$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\operatorname{FFIR}(\mathrm{N}, \mathrm{T})=$ | False poor. identification rate | $\mathrm{R}=$ Num. candidates eramined | | $T>0 \rightarrow$ Identification |

3.6 Fixed length candidate lists, threshold independent workload

Suppose an automated face identification algorithm returns L candidates, and a human reviewer is retained to examine up to R candidates, where $R \leq L$ might be set by policy, preference or labor availability. For now, assume also that the reviewer is not provided with, or ignores, similarity scores, and thresholds are not applied. Given the algorithm typically places mates at low (good) ranks, the number of candidates a reviewer can be expected to review can be derived as follows. Note that the reviewer will:

- Always inspect the first ranked image

Frac. reviewed $=1$

- Then inspect those candidates where mate not confirmed at rank 1

Frac. reviewed $=1$-CMC(1)

- Then inspect those candidates where mate not confirmed at rank 1 or 2

Frac. reviewed $=1$-CMC(2)
etc. Thus if the reviewer will stop after a maximum of R candidates, the expected number of candidate reviews is

$$
\begin{align*}
M(R) & =1+(1-C M C(1))+(1-C M C(2))+\ldots+(1-C M C(R-1)) \tag{10}\\
& =R-\sum_{r=1}^{R-1} C M C(r) \tag{11}
\end{align*}
$$

A recognition algorithm that front-loads the cumulative match characteristic will offer reduced workload for the reviewer. This workload is defined only over the searches for which a mate exists. In the cases where there troly is no mate, the reviewer would review all R candidates. Thus, if the proportion of searches for which a mate does exist is β, which in the law enforcement context would be the recidivism rate [31 , the full expression for workload becomes:

$$
\begin{align*}
M(R) & =\beta\left(R-\sum_{r=1}^{R-1} C M C(r)\right)+(1-\beta) R \tag{12}\\
& =R-\beta \sum_{r=1}^{R-1} C M C(r) \tag{13}
\end{align*}
$$

3.7 Timing measurement

Algorithms were submitted to NIST as implementations of the application programming interface(API) specified by NTST in the Evaluation Plan [1M]. The API includes functions for initialization, template generation, finalization, search, gallery insert, and gallery delete. Two template generation functions are required, one for the preparation of an enrollment template, and one for a search template.
In NTST's test hamess, all functions were wrapped by calls to the $\mathrm{C}++$ std:chrono::high resolution clock which on the dedicated timing machine counts 1 ns clock ticks. Precision is somewhat worse than that however.

3.8 Uncertainty estimation

3.8.1 Random error

This study leverages operational datasets for measurement of recognition error rates. This affords several advantages. First, large numbers of searches are conducted (see Table 5) giving precision to the measurements. Moreover, for the two mugshot datasets, these do not involve reuse of individuals so binomial statistics can be expected to apply to recognition error counts. In that case, an observed count of a particular recognition outcome (i.e, a false negative or false positive) in M trials will sustain 95% confidence that the actual error rate is no larger than some value,

As an example, the minimum number of mugshot searches conducted in this report is $M=154549$, and for an observed FNIR around 0.002 , the measurement supports a conclusion that the actual FNIR is no higher than 0.00228 at 99% confidence level. On the false positive side, we tabulate FNIR at FPIR values as low as 0.001 . Given estimates based on 331254 non-mate trials, the actual FPIR values will be below 0.00115 at 99% confidence. In conclusion, large scale evaluation, without reuse of subjects, supports tight uncertainty bounds on the measured error rates.

3.8.2 Systematic error

The FRVT 2018 dataset includes anomalies discovered as a result of inspecting images involved in recognition failures from the most accurate algorithms. Two kinds of failure occur: False negatives (which, for the purpose here, include failures to make templates) and false positives.
False negative errors: We reviewed 600 false negative pairs for which either or both of the leading two algorithms did not put the correct mate in the top 50 candidates. Given 154549 searches, this number represents 0.39% of the total, resulting in $\mathrm{FNTR}=0.0039$. Of the 600 pairs:

- A: Poor quality: About 20% of the pairs included images of very low quality, often greyscale, low resolution, blurred, low contrast, partially cropped, interlaced, or noisy scans of paper images, Additionally, in a few cases, the face is injured or occluded by bandages or heavy cosmetics.

D B: Ground truth identity label bugs: About 15% of the pairs are not actually mated. We only assigned this outcome when a pair is clearly not mated.

- C: Profile views: About 35\% included an image of a profile (side) view of the face, or, more rarely, an image that was rotated 90 degrees in-plane (roll).

D D: Tattoos: About 30% included an image of a tattoo that contained a face image. These arise from mis-labelling in the parent dataset metadata,

D E: Ageing: There is considerable time-lapse between the two captures.
All these estimates are approximate. Of these, the tattoo and mislabled images can never be matched. These constitute an accuracy floor in the sample implying that FNIR cannot be below 0.0018^{11}. The profile-views, low-quality images, and images with considerable ageing can, in principle, be successfully matched - indeed some algorithms do so - so are not part of the accuracy floor.

[^7]| 20 | FNIR $(\mathbb{N}, \mathrm{R}, \mathrm{T})=$ $\operatorname{FFIR}(\mathrm{N}, \mathrm{T})=$ | False neg identification rate False pos. identification tate | $\mathrm{N}=\mathrm{Num}$. enrolled subjects
 $\mathrm{R}=$ Num. candidates examined | $T=$ Thueshold | $\begin{aligned} & \mathrm{T}=0 \rightarrow \text { Investiga } \\ & \mathrm{T}>0 \rightarrow \text { Identifioa } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\operatorname{FFIR}(\mathrm{N}, \mathrm{T})=$ | False pos. identification tate | | | $T>0 \rightarrow \text { Identific }$ |

For the microsoft-4 algorithm the lowest miss rate from (recent entry in Table 16) is $\operatorname{FNTR}(640000,50,0)=0.0018$. This is close to the value estimated from the inspection of misses. It is below the 0.0039 figure because the algorithm does match some profile and poor quality images, that the yitu-2 algorithm does not.
For many tables (e.g. Table 16), the FNIR values obtained for the FRVT-2018 mugshots could be corrected by reducing them by 0.0018 . The best values would then be indistinct from zero. The results in this report were not adjusted to account for this systematic error.
False positive errors: As depicted in Figure 9 many of the DET characteristics in this report exhibit a pronounced turn upward at low false positive rates. The shape can be caused by identity labelling errors in the ground truth of a dataset, specifically persons present in the database under two IDs such that some proportion of non-mate pairs are actually mated. We merged the highest 1000 non-mate pairs produced by three different algorithms which resulted in 1839 unique pairs. This constitutes 0.56% of all non-mate searches. We assert that it is very difficult for human reviewers to assign the pairs into the following three categories: twins; doppelgangers; or ground-truth errors (instances of the same person under two IDs). Given this difficulty we made no attempt to correct any ground truth except by removing 57 pairs in the following categories:

D A: Profile views: Thirteen pairs included one or two profile-view images. As described in Figure 102, these can cause false positives.

D B: Same-session photographs: For twelve pairs, the images were identical or trivially altered (e.g. cropped) versions of the same photo. These were present under a different ID likely due to some clerical or procedural mistake.
\Rightarrow C: Tattoos of faces: There were fourteen instances of tattoo photographs that contained faces causing false matches.

D D; T-shirt faces: There were six instances of T-shirt photographs (of Bob Marley and Che Guevara) being detected instead of the face and causing false positives.

D E: Background faces: There were twelve instances of one subject appearing in the background of two otherwise correct portrait photos.

Note we did not remove any images where there was a chance that the pair was actually a different person. In any case, the results in this report have not been adjusted for this systematic error.

4 Results

This section gives extensive results for algorithms submitted to ERVT 2018. Three page "report cards" for each algorithm are contained in a separate supplement. Performance metrics were described in section 3. The main results are summarized in tabular form with more exhaustive data included as DET, CMC and related graphs in appendices as follows:

- The three tables $6-8$ list algorithms alongside full developer names, acceptance date, size of the provided configuration clata, template size and generation time, and search duration data.
- The template generation duration is most important to applications that require fast response. For example, an eGate taking more than two seconds to produce a template might be unacceptable. Note that GPUs may be of utility in expediting this operation for some algorithms, though at additional expense. Two additional factors should be considered ${ }^{1213}$.
- The search duration is the time taken for a search of a search template into a gallery of N enrollment templates. This performance variable, together with the volume of searches, is influential on the amount of hardware needed to sustain an operational deployment. This is measured here with the algorithm running on a single core of a contemporary CPU. Search is most simply implemented as N computations of a distance metric followed by a sort operation to find the closest enrollments. However, considerable optimization of this process is possible, up to and including fast-search algorithms that, by various means, avoid computation of all N distances.
- The template size is the size of the extracted feature vector (or vectors) and any needed header information. Large template sizes may be influential on bus or network bandwidth, storage requirements, and on search duration. While the template itself is an opaque data blob, the feature dimensionality might be estimated by assuming a four-bytes-per-float encoding. There is a wide range of encodings. For the more accurate algorithm, sizes range from 256 bytes to about 2 KB bytes, indicating essentially no consensus on face modeling and template design.
- The template size multiplier column shows how, given k input images, the size of the template grows. Most implementations internally extract features from each image and concatenate them, and implement some score-level fusion logic during search. Other implementations, including many of the most accurate algorithms, produce templates whose size does not grow with k. This could be achieved via selection of the best quality image - but this is not optimal in handling ageing where the oldest image could be the best quality. Another mechanism would be feature-level fusion where information is fused from all k inputs. In any case, as a black-box test, the fusion scheme is proprietary and unknown.
- The size of the configuration data is the total size of all files resident in a vendor-provided directory that contains arbitrary read-only files such as parameters, recogrition models (e.g caffe). Generally a large value for this quantity may prohibit the use of the algorithm on a resource-constrained device.
${ }^{12}$ The FRVT 2018 API prohibited threading, so some gains from parallelism may be available on multiple-cores or multiple processors, if the feature extraction code could be distributed across them.
${ }^{1 / 3}$ Note also that factors of two or mote may be realizable by exploiting modern vector processing instructions on CPUs. It is not dear in our measurements whether all developers exploited Intel's AVX2 instructions, for example. Our machine was so equipped, but we insisted that the same compiled library should also run on older machines lacking that instruction. The more sophisticated implementations may have detected AVX2 presence and branched accordingly. The less sophisticated may be defaulted to the reduced instruction set. Readers should see the FRVT 2018 API doctument for the specific chip details.

- Tables 16-17 report core rank-based accuracy for mugshot images. The population size is limited to $\mathrm{N}=1.6$ million identities because this is the largest gallery size on which all algorithms were executed. Notable observations from these tables are as follows:
- Accuracy gains during 2018: NISI Interagency Report 8238 documented massive gains over those reported in the FRVT 2014 report, NIST Interagency Report 8009.
Further gains are documented in this report. Comparing the most accurate algorithm in June 2018, Microsoft4, with the most accurate in November 2018, NEC-2, the value of $\mathrm{FN} \cos (\mathrm{N}, 1,0)$ reduced from 0.0031 to 0.0028 with $N=1.6$ million recent images. For lifetime enrollments, Microsoft-4 remained the most accurate algorithm as the newer variants from Microsoft did not reduce this error rate.
We further note that the revolution is not over: Figure 19 shows that many developers have made great advances in the four months between Phases 1 and 2 of FRVT 2018, Feburary to June. Most developers saw a two-fold reduction in errors, with Neurotechnology seeing a five fold reduction,
- Wide range in accuracy: The rank-1 miss rates vary from $F N \operatorname{IR}(N, 1,0)=0.001$ for nec- 3 up to about 0.5 for the very fast but inaccurate microfocus-x algorithms. Among the developers who are superior to NEC in 2013, the range is from 0.002 to 0.035 for camvi-3. This large accuracy range is consistent with the buyerbeware maxim, and indicates that face recognition software is far from being commoditized.
- Tables 19 -20 report threshold-based error rates, $\operatorname{FNIR}(\mathrm{N}, \mathrm{L}, \mathrm{T})$, for $\mathrm{N}=1.6$ million for mugshot-mugshot accuracy on FRVT 2014, FRVT 2018, and also (in pink) mugshot-webcam accuracy using FRVT 2018 enrollments. Notable observations from these tables are as follows:
- Order of magnitude accuracy gains since 2014: As with rank-based results, the gains in accuracy are substantial, though somewhat reduced. At FPIR $=0.01$, the best improvement over NEC in 2014 is a nine-fold reduction in FNIR using the Microsoft-4 algorithm. At $F P I R=0.001$, the largest gain is a six-fold reduction in FNIR via the Yitu 2 algorithm.
- Broad gains across the industry: About 19 companies realize accuracy better than the NEC benchmark from 2014. This is somewhat lower than the 28 developers who succeeded on the rank- 1 metric. This may be due to the ubiquity of, and emphasis on, the rank-1 metric in many published algorithm development papers.
- Webcam images: Searches of webcam images give FNIR(N,T) values around 2 to 3 times higher than mugshot searches. Notably the leading developers with mugshots are approximately the same with poorer quality webcams. But some developers e.g. Camvi, Megvii, Tong Yi, and Neurotechnology do improve their relative rankings on webcams, perhaps indicating their algorithms were tailored to less constrained images.
\triangleright Tables $10,12,13$ and show, respectively, high-threshold, rank 1 , nd rank 50 FNIR values for all algorithms performing searches into five different gallery sizes, $\mathrm{N}=640000, \mathrm{~N}=1600000, \mathrm{~N}=3000000, \mathrm{~N}=6000000$ and 12000000 . The $\mathrm{FPIR}=0.001$ table is included to inform high-volume duplicate detection applications. The Rank-1 table is included as a primary accuracy indicator. The Rank-50 table is included to inform agencies who routinely produce 50 candidates for human-review. The notable results are:
- Slow growth in rank-based miss rates; FNIR(N, R) generally grows as a power law, $a N^{i}$. From the straight lines of many graphs of Figure 22 this is clearly a reasonable model for most, but not all, algorithms. The coefficient a can be interpreted as FNIR in a gallery of size 1. The more important coefficient b indicates

$\begin{aligned} & 2019 / 09 / 11 \\ & 17: 24: 52 \end{aligned}$	FNIR (N, R, T) $\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False neg. identification rate False pos. identification tate	$\mathrm{N}=$ Num. enrolled subjects $\mathrm{R}=$ Num. candidates examined	$T=$ Theshold	$\begin{aligned} & T=0 \rightarrow \text { Investigation } \\ & T>0 \rightarrow \text { Identification } \end{aligned}$

scalability, and often, $b \ll 1$, implies very benign growth in FNIR. The coefficients of the models appear in the Tables 12 and 13 ,

- Slow growth in threshold-based miss rates: $\operatorname{FNIR}(\mathrm{N}, \mathrm{T})$ also generally grows as a power law, $a \wedge^{b}$ except at the high threshold values corresponding to low FPIR values. This is visible in the plots of Figure 38 which show straight lines except for $\mathrm{FPIR}=0.001$, which increase more rapidly with N above 3000000 . Each trace in those figures shows FNIR(N, T) at fixed FPIR with both N and T varying. Thus at large N , it is usually necessary to elevate T to maintain fixed FPIR. This causes increased FNIR. Why that would no-longer obey a power-law is not known. However, if we expect large galleries to contain individuals with familial relations, to the non-mate search images - in the most extreme case, twins - then suppression of false positives becomes more difficult, This is discussed in the Figures starting at Fig. 9
- Figure 21 shows false positives from twins against their enrolled siblings, broken out by type of twin: fraternal or identical. The Figure is based on the enrollment of 104 single images on one of a pair of twins, and then the search of 2354 second images. Note that the dataset is heavily skewed towards identical twins which is not representative of the true population. There is also a skew towards same sex fraternal twin pairs compared to different sex fraternal twin pairs again not representative of the true population.

The notable results are:

- For all algorithms tested, the 1087 mated searches (Twin A vs. Twin A) produce scores almost always above typical operational thresholds, with (not shown) matches at rank 1. The images are of good quality, so this is the result expected from the rest of this report.
- For the 1066 identical twin searches (AB), almost all procuce the twin at rank 1, with a few producing the mate at further down the candidate lists rank and low score.
- For the 169 fraternal searches (AB) from same sex pairs, most algorithms give a large number of very high scores, implying false positives at all thresholds. However, there there are long tails containing lower scores that are correctly below threshold. In general, scores that are higher in this distribution are all rank 1 whereas the lower scores have much higher ranks.
- (Not shown) Of the 169 , there are 24 fraternal seatches (AB) involving different sex twins. Here most algorithms correctly report scores well below the lowest threshold, and usually not on the candidate list at all.

Figure 17：［Mugshot Dataset］Speed－accuracy tradeoff．For developers of the more accurate algorithms the plot shows the tradeoff of high－threshold recognition miss－ rates，FNIR (N, N, T) for FPIR $(N, T)=0.003$ ，and template generation time．Developers are coded by color．Template size is encoded by the size of the circle．Some labels are quite distant from the respective point，to avoid superposing text．Without any other influences，the assumption would be that taking time to localize the face，and extract features，would lead to better accuracy．The most notable result，for NEC，is that their slower algorithms are much more accurate than the version that extract features in fewer than 90 milliseconds．

Figure 18: [Mugshot Dataset] Speed-accuracy tradeoff. For developers of the more accurate algorithms the plot shows the tradeoff of rank-one recognition miss-rates, FNIR(N, 1, 0), and template generation time. Developers are coded by color. Template size is encoded by the size of the circle. Some labels are quite distant from the respective point, to avoid superposing text. Without any other influences, the assumption would be that taking time to localize the face, and extract features, would lead to better accuracy. This occurs for NEC with their slower algorithm being much accurate than the version that extract features in fewer than 90 milliseconds.

			$\begin{aligned} & \text { SHORT } \\ & \hline \text { NAME } \end{aligned}$	SEC:NUM,	$\begin{aligned} & \text { VALIDATICN } \\ & \text { DATE } \end{aligned}$	$\begin{aligned} & \text { Cansing } \\ & \text { DSTA (Min) } \end{aligned}$	TEMTLATE GENEEATION								
		FLLL NAME					51zE(B)	Muti ${ }^{\text {a }}$	ttime (10.5) ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{L}=1 \\ & \mathrm{~N}=1.6 \mathrm{~m} \end{aligned}$	$\begin{aligned} & L=50 \\ & \mathrm{~N}=1.6 \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{L}=50 \\ & \mathrm{~N}=3 \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{L}=5 \mathrm{CO} \\ & \mathrm{~N}=6 \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{L}=50 \\ & \mathrm{~N}=12 \mathrm{M} \end{aligned}$	POWEI LAW (as)
1		3Dipi	3divi	0	2018-02-09	186	${ }^{193} 46 \%$	k	${ }^{30} 426$	-	${ }^{4 \pi} 553$	-	-	-	
2		3 Sisi	3divi	1	2018.02-15	187	${ }^{\text {W5 }}{ }_{422} 4$	k	${ }^{51} 428$	\sim	ए37	-	-	-	
3		3Divi	3isivi	2	2013-(12-15	187	${ }^{48} 528$	k	${ }^{4} 228$	-	${ }^{17} 33$	-	-	-	
4		3Divi	3divi	3	2018-06-19	165	${ }^{1 / 512}$	k	${ }^{133} 625$	${ }^{757}$	${ }^{9} 76$	$=$	$-$	3	
5		3Divi	3divi	4	2018-66-13	186	${ }^{158} 4536$	k	${ }^{19} 628$	${ }^{73604}$	${ }^{2 \times 801}$	$-$	$=$	\sim	
6		3Disi	3divi	5	$2018.10-26$	186	${ }^{1784} 4 \times 96$	k	${ }^{181653}$	${ }^{67537}$	${ }^{131} 5837$	${ }^{3} 1876$	${ }^{2} 2612$	${ }^{415524}$	${ }^{7} 0.07 \mathrm{MV}^{2 / 1}$
7		3Dipi	3divi	6	2018-10-26	187	${ }^{+528}$	k	${ }^{131} 653$	${ }^{10} 33$	${ }^{15} 33$	\cdots	\sim	-	
8		Achers	alchera	0	2013.0630	168	${ }^{1852(2)}$	k	${ }^{42} 263$	${ }^{753} 3296$	${ }^{2985} 5120$	\bigcirc	-	$=$	
9		Alcheria	alchera	1	2018-06-30	46	${ }^{1284248}$	k	${ }^{8} 66$	${ }^{12} 3516$	${ }^{195} 5489$	-	$-$	-	
10		Alchera	alchera	2	2018-10.30	7	${ }^{145} 2648$	k	${ }^{16} 115$	${ }^{1182920}$	${ }^{1792926}$	-	-	-	
11		Alchera	alchera	3	2018-10-30	251	${ }^{1782} 2148$	k	${ }^{117} 548$	${ }^{179} 2952$	${ }^{181} 29853$	${ }^{7 \times 3} 540$	${ }^{34} 14988$	${ }^{21} 35227$	${ }^{3} 0.10 \mathrm{Na}^{1.2}$
12		Arike hrveements	anke	0	2018-10-30	$7 \times$	${ }^{165} 2672$	k	${ }^{96451}$	${ }^{1 / 675}$	${ }^{123} 748$	${ }^{51482}$	${ }^{\text {29665 }}$	${ }^{46} 6142$	${ }^{80.21 / N^{1.1}}$
13		Anke livestments	anke	1	2018-10-20	79	${ }^{159} 2 \mathrm{Cl}_{2}$	k	${ }^{78} 433$	${ }^{6} 700 \mathrm{C}$	${ }^{121} 769$	-	-	-	
14		Avare	axams	0	2018-02-16	251	${ }_{1} 1564$	k	${ }^{13} 663$	-	${ }^{6} 251$	$-$	-	-	
15		Aware	xwape	1	2018-0216	232	${ }^{101564}$	k	${ }^{15} 661$	-	${ }^{2} 251$	-	-	-	
16		Aware	avvare	2	2018-023-16	349	${ }^{153} 2076$	k	${ }^{1 / 9 / 2}$	-	${ }^{82} 2$	$-$	-	-	
17		Aware	WNare	2	2018-06-22	350	${ }^{156} 2076$	k	${ }^{180} 716$	${ }^{174} 2426$	${ }^{174} 2508$	${ }^{79} 4495$	-	\sim	${ }^{41} 1,09 \mathrm{M}^{1.01}$
18		Aware	CWware	4	2013-06-22	349	${ }^{29,2}$	1	${ }^{107 / 72}$	${ }^{8181232}$	${ }^{104} 1187$	-	-	-	
19		Aware	(awame	5	2018-10-3)	368	${ }^{173} 9100$	k	${ }^{182827}$	${ }^{18,94}$	${ }^{6} 97$	${ }^{19} 202$	${ }^{11} 370$	${ }^{9} 251$	${ }^{14.13 .10 M^{0.7}}$
20		Amare	aware	6	2018-10-30	368	${ }^{3} 124$	k	${ }^{168188}$	3157	${ }^{9} 162$	-	-	-	
21		dyonis	syonio	0	2018-06-21	57	${ }^{10106}$	k	${ }^{1} 10$	${ }^{47} 283$	${ }^{\text {T/ } 2 / 88}$	-	-	-	
22		Ayonix	ayonic	1	2018-1029	74	${ }^{81036}$	k	${ }^{3} 12$	${ }^{+12} 2{ }^{2} 7$	${ }^{31} 27$	\sim	-	-	
23		Ayonix	sychios	2	2018-10-30	74	${ }^{310136}$	1	${ }^{11}$	${ }^{3} 277$	${ }^{\text {Fi } 274}$	${ }^{5} 831$	${ }^{2} 1072$	${ }^{2} 2268$	${ }^{2} 0.11 \mathrm{IN}^{1.0}$
24		Campi Technologies	csmvitech	1	2018-02-16	9	104	1	${ }^{31}$	-	${ }^{12} 23$	-	-	-	
25		Camrj Technologies	carnvitech	2	2018-12-16	442	${ }^{3} 10.04$	1	${ }^{172} 774$	-	${ }^{4} 20$	-	-	-	
26		Camy Technologies	caravitech	3	2118-0.6-30	233	${ }^{2} 104$	1	${ }^{19} 707$	${ }^{10}$	${ }^{9} 11$	\bigcirc	$=$	\square	
27		Camyi Technologies	comvitech	4	2018-10-30	233	${ }^{5104}$	1	${ }^{165} 718$	${ }^{17} 33$	${ }^{18} 32$	${ }^{83}$	${ }^{6} 40$	${ }^{4} 49$	
28		Campi Temnologies	camvitech	5	2m8-1030	257	${ }^{6} 10{ }^{2} 4$	1	${ }^{10} 769$	${ }^{9} 31$	${ }^{5} 30$	-	-	-	
29		Thales	cogant	0	2018-06-20	533	${ }^{\text {\% }} 525$	k	${ }^{116551 .}$	${ }^{3,254}$	${ }^{100} 588$	${ }^{2} 1043$	${ }^{4} 2060$	${ }^{x} 4141$	${ }^{2} 80.46 / \mathrm{Na}^{1,0}$
30		Thates	cogent	1	2018-06-20	533	${ }^{45} 525$	k	${ }^{15} 558$	54498	${ }^{2188556}$	${ }^{46} 1049$	${ }^{32} 2082$	${ }^{5} 4263$	
31		Thajes	cogent	2	2018-10-30	581	${ }^{81043}$	k	${ }^{265989}$	${ }^{106} 2017$	${ }^{166} 2144$	${ }^{73} 4298$	${ }^{29} 4772$	${ }^{614429}$	${ }^{51.08} \mathrm{NH}^{1.0}$
32		Thales	cogent	3	2018-10-30	681	${ }^{810} 103$	k	${ }^{369680}$	${ }^{88} 1230$	${ }^{1661311}$	${ }^{65} 2687$	${ }^{0} 5959$	810184	${ }^{3} 0.62 \mathrm{~N}^{1.0}$
3.		Cogniteo Systems SmbH	cognitec	0	2018-06-21	364	${ }^{155} 2{ }^{1052}$	k	${ }^{217} 176$	${ }^{7617} 1748$	${ }^{21} 17839$	${ }^{2} 3672$	${ }^{46} 7093$	${ }^{63} 152,24$	${ }^{550.57 ~ M ~ M ~}{ }^{1.0}$
34		Cognites Systemis 6 mbH	cogntitec	1	2018-06-21	412	${ }^{119} 2{ }^{125} 5$	k	${ }^{28} 202$	${ }^{108} 1835$	${ }^{456} 1805$	${ }^{+3971}$	${ }^{37} 74.54$	${ }^{61649}$	${ }^{*} 0.49 \mathrm{~N}^{1.1}$
35		Cogritioc Systams GmbH	compritec	2	2018-10-30	463	${ }^{1515652}$	k	${ }^{3}{ }_{227}$	${ }^{9}{ }_{17} 739$	${ }^{1531763}$	${ }^{6} 3660$	${ }^{687279}$	${ }^{518895}$	${ }^{4} 0.83 \mathrm{NV}^{1,1)}$
36		Cogriter Bystems Gmbir	Eognitec	3	2018-103)	465	${ }^{157} 2 \mathrm{CS5}$	k	${ }^{52} 297$	${ }^{881719}$	${ }^{[551799}$	${ }^{6} 3698$	${ }^{50} 7277$	${ }^{61} 1494$	$59.657^{17.0}$
37		Dahua Tednnology Co. Ltd	dahua	0	2018-10-22)	276	${ }^{12} 1248$	k	"378	$=$	${ }^{1 \omega_{2,56}}$	-	-	-	
38		Dahua Tethrology Ca Ltd	dahua	1	2018-10-29	276	${ }^{118} 2648$	k	${ }^{68} 371$	$-$	${ }^{* 256}$	${ }^{26} 601$	${ }^{\text {F/ }} 1199$	${ }^{3} 3001$	${ }^{8,02} \mathrm{~N}^{1 / 2}$
39		Dermalog	dermalcz	0	2018-022-16	0	${ }^{5} 128$	1	${ }^{51544}$	-	${ }^{\text {W }}$	-	-	-	
40		Dermalog	dermolog	1	2013-12-16	0	${ }^{5128}$	1	${ }^{22171}$	-	${ }^{9} 407$	-	-	-	
41		Dermalog	darmalog	2	2018-02-16	0	${ }^{18256}$	k	${ }^{63} 344$	-	${ }^{196} 640$	-	-	-	
42		Demalog	dermalcie	3	2018-06-21	0	${ }^{5} 128$	1	${ }^{31} 211$	${ }^{1792}$	${ }^{3} 95$	$=$	-	$=$	
43		Dermalog	dermalcz	4	2018.06-21	9	${ }^{1} 128$	1	${ }^{2} 208$	${ }^{16} 12$	${ }^{39} 9$	\sim	-	-	
44		Dermalog	dermaloz	5	2018-10-26	0	${ }^{6} 128$	1	${ }^{14} 532$	${ }^{2} 1$	${ }^{1} 0$	${ }^{2} 0$	${ }^{10}$	10	36,21 M ${ }^{3}$
45		Dermalog	dermal/g	6	2018-10-26	0	${ }^{2} 25$	1	${ }^{10} 5{ }_{514}$	${ }^{35} 141$	3_{143}	${ }^{18}$	${ }^{15} 522$	${ }^{19} 1285$	${ }^{50} 0.05 \mathrm{~N}^{1.0}$
46		Ever AI	everai	0	2018-06-21	142	${ }^{121)} 2{ }^{\text {c }}$ (48	1	${ }^{39} 438$	T_{4}	5_{3}	${ }^{2} 5$	=	-	${ }^{7} 4241 \mathrm{~N}^{13}$
47		Ever Al	everai	1	2013-06-21	200	${ }^{112} 2648$	1	${ }^{18} 590$	${ }^{5936}$	${ }^{1} 366$	${ }^{3} 651$	-	$-$	${ }^{70} 0.03 \mathrm{Na}^{1 / 1}$
48		Ever AI	eversi	2	2018.1130	224	${ }^{132} 2 \mathrm{C} 48$	1	${ }^{2} 378$	${ }^{46} 278$	${ }^{7} 288$	$-$	-	$-$	
49		Ever A1	everai	3	2018-10-59	438	${ }^{112} 2$ C48	1	${ }^{18 / 735}$	${ }^{45} 278$	${ }^{7} 1881$	${ }^{5} 57 / 2$	${ }^{29} 1146$	${ }^{4} 2278$	${ }^{38} 0.12 \mathrm{~N}^{-1.0}$
50		Eyedoa Recogrition	pyedea	0	201802.16	441	${ }^{10} 4152$	k	${ }^{3} 422$	-	${ }^{120} 640$	-	-	$-$	
51		Eyediea Recogrition	byelea	1	2018-(12-16	237	${ }^{\alpha} 10106$	k	${ }^{36} 311$	-	${ }^{367}$	-	-	-	
52		Eyedea Recsgrition	syedea	2	2018-02-16	238	${ }^{10166}$	k	${ }^{36} 429$	-	${ }^{7} 305$	-	-	-	
Nates															
	numerical computation (eq, blas).														
	2	This multiplierexpresses the increase in template size when \& smages are pasged to the template generation function.													
		machine in (3) counts ins dock ticks. Precision is somewhat yovese than that however													
	4	not be used numerically.													

Table 6: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations, denoted by "-", are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.

Table 7: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations, denoted by "-", are absent because those runs were not executed, usually because we did not rin on the larger galleries. Caution: The power-law model is sometimes an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.

	DEvELOPER	5 HECT	5 F .	vacimation	Conmbs	thentlategeneration			SEARCH DURATION ${ }^{\text {a }}$ MILLESEC					
	sulumame	NAMA	NHM.	Dstb	DSte. (ME)	SİE (${ }_{\text {a }}$)	MLCt ${ }^{2}$	TMEL (NSE) ${ }^{3}$	$\begin{aligned} & \mathrm{L}=1 \\ & \mathrm{~N}=1,6 \mathrm{M} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1=50 \\ \mathrm{~N}=1.6 \mathrm{M} \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{L}=50 \\ & \mathrm{~N}=3 \mathrm{M} \end{aligned}$	$\begin{aligned} & 4=50 \\ & N=6 M \end{aligned}$	$\begin{aligned} & \mathrm{N}=50 \\ & \mathrm{~N}=12 \mathrm{Na} \end{aligned}$	PGWER LAW ($\mu \mathrm{L} 5$)
105	Microsoft	microsoft	2	2018-(2)-12	228	${ }^{3} 1024$	1	${ }^{12} 555$	-	एक ${ }^{\text {c }}$	-	-	-	
106	Microsoft	mistrosoft	3	2018-06-20	230	${ }^{61024}$	1	${ }^{80} 404$	${ }_{6} 8_{1628}$	${ }^{148} 1503$	${ }^{55} 360$	${ }^{*} 6730$	${ }^{58} 13833$	${ }^{30} 0.51 . N^{1 / 2}$
107	Microboft	microsots	4	2018-06-20	437	${ }^{120} 2048$	1	${ }^{171773}$	${ }^{1172662}$	${ }^{17 \%} 2691$	${ }^{25} 5260$	${ }^{711006}$	${ }^{9722748}$	${ }^{50.83 . N^{11}}$
108	Microsoit	microsoft	5	2018-10-29	381	${ }^{31} 1024$	1	${ }^{1885} 773$	${ }^{3} 1604$	${ }^{501671}$	${ }^{3} 3073$	${ }^{18} 3296$	${ }^{571.3147}$	${ }^{3} 0.79$ N ${ }^{1 / 4}$
109	Microsoft	microsoft	6	2018-10-29	478	${ }^{82} 1024$	1	${ }^{152} 695$	\% 1640	${ }^{19} 1617$	${ }^{6} 5707$	${ }^{656294}$	${ }^{6612879}$	${ }^{5} 0.69 N^{10}$
110	NBC	nec	0	2018-06-21	131	${ }^{172} 2512$	k	${ }^{16} 182$	${ }^{3} 317$	${ }^{81} 426$	${ }^{37} 738$	${ }^{3} 1315$	${ }^{27} 2737$	${ }^{18} 0.73 \mathrm{~N}^{519}$
111	NEC	nec	1	2013-06-29	131	${ }^{17}{ }_{2509}$	k	${ }^{16} 68$	* 193	${ }^{29} 208$	${ }^{23} 388$	${ }^{3} 750$	${ }^{18}{ }_{1} 57 /$	${ }^{4 \times 0} 021 . N^{10}$
112	NEC	ties	2	2018-10-30	705	${ }^{101} 1616$	k	${ }^{140} 653$	${ }^{3} 405$	${ }^{\text {9/409 }}$	${ }^{4} 1072$	${ }^{51755}$	${ }^{3} 4.285$	${ }^{00} 0.06 \mathrm{~N}^{1.1}$
113	NEC	nec	3	2018-10-30	774	${ }^{102} 1772$	k	${ }^{150} 699$	${ }^{3} \mathrm{z}$	${ }^{3} 7$	${ }^{5} 14$	${ }^{5} 40$	${ }^{6} 882$	${ }^{80} 0.00 \cdot N^{1.2}$
114	Neuroterdriolog?	neurotech	0	201802-16	331	${ }^{10} 5214$	k	${ }^{159} 702$	\bigcirc	1233440	\checkmark	-	-	
115	Neutotastan ${ }^{\text {g }}$ g\%	neurotech	1	20180216	331	${ }^{18} 8214$	k	${ }^{145} 661$	-	सं 3054	\checkmark	-	-	
116	Nsurotatiolelegy	tieuroted	2	2018-02-16	331	${ }^{10}{ }^{18214}$	k	${ }^{174} 658$	\bigcirc	${ }^{12}{ }^{12051}$	-	\square	-	
117	Neurstasthnology	neurotech	3	2018-06-27	265	${ }^{136} 2048$	k	${ }^{176} 847$	${ }^{8} 1084$	${ }^{135} 1059$	*2111	${ }^{5 \times 4779}$	${ }^{3} 8873$	${ }^{8} 8073 \mathrm{~N}^{1 / 0}$
118	Neurotestinology	neurotech	4	2018-06-27	235	${ }^{185} 2048$	k	${ }^{155} 543$	${ }^{8} 1060$	${ }^{141051}$	${ }^{17} 2091$	${ }^{3 / 4263}$	${ }^{4} 88736$	${ }^{17} 1.22 \mathrm{~N}^{1 / 0}$
119	Neurotatariclegy	crurotech	5	2018-10-20	266	${ }^{17} 256$	k	${ }^{8+4} 412$	${ }_{8}^{88} 8$	${ }^{1278989}$	\$1690	A_{3219}	${ }^{80} 995$	${ }^{162} 0.19 / \mathrm{N}^{1 / 2}$
120	Neurotesturclogy	treuroted	6	2018-10-30	564	${ }^{15} 256$	k	${ }^{169} 746$	${ }_{18} 839$	${ }^{13} 8842$	-	-	-	
121	Newland ComputerCo. Ltd	neerland	2	2018-10-30	96	${ }^{1010} 2048$	-	${ }^{1919} 868$	${ }^{1348653}$	${ }^{14} 88765$	${ }^{1617713}$	${ }^{81} 38963$	-	${ }^{31,32 N^{1 / 1}}$
122	Noblis	noblis	1	2018.10-30	114	${ }^{15}{ }_{2018}$	1	${ }^{31} 211$	${ }^{31273}$	${ }^{19181272}$	\checkmark	$-$	-	
123	Noblis	aoblis	2	2018-10-30	153	${ }^{206144}$	1	${ }^{\mathrm{H}^{10} 535}$	${ }^{116} 2513$	${ }^{10552522}$	${ }^{\text {W }} 5649$	${ }^{72} 1242$	${ }^{23} 44262$	${ }^{88} 0.04 \mathrm{~N}^{1 / 3}$
124	N-Tech Lab	meach	$1)$	2018-02-16	2124	${ }^{185} 4442$	k	${ }^{166730}$	-	${ }^{59} 382$	${ }^{36} 673$	${ }^{\text {M }} 1344$	-	${ }^{3} 0.27 \mathrm{~N}^{1.0}$
125	N-Tactilab	atach	1	201802.16	851	${ }^{1417 / 366}$	k	${ }^{2} 405$	\cdots	${ }^{1} 161$	\bigcirc	-	$-$	
126	N-Tech Lab	ntech	3	2018-06-21	3664	${ }^{17543434}$	k	${ }^{188_{831}}$	${ }^{3} 384$	${ }^{80} 326$	${ }^{5} 596$	${ }^{51192}$	${ }^{22} 2411$	${ }^{8} \mathrm{O} 24 \mathrm{~N}^{1.0}$
127	N-Tech Lab	ntech	4	2018-06-21	3766	${ }^{173} 3435$	k	${ }^{198929}$	3/378	${ }^{312}$	${ }^{32} 597$	${ }^{31204}$	${ }^{3}{ }^{2416}$	${ }^{8} 021 N^{1 / 0}$
128	N. Toch Lab	ntach	5	2018-10-30	1685	${ }^{1851940}$	k	${ }^{164777}$	${ }^{42} 243$	${ }^{5 / 246}$	${ }^{8858}$	${ }^{2} 1100$	${ }^{22} 2867$	${ }^{3} 0.02 N^{1.1}$
129	N-Tasti Lab	ntech	6	2018-10-30	1686	${ }^{151240}$	k	${ }^{1888} 841$	${ }^{4643}$	${ }^{5 / 246}$	${ }^{3} 546$	${ }^{3} 1104$	${ }^{23} 2873$	${ }^{50} 002 \mathrm{~N}^{11}$
130	Quisantasoff	quantasofe	1	2018-11-30	276	${ }^{12} \mathrm{P} 2048$	k	${ }^{3} 396$	${ }^{[51515422}$	${ }^{21} 14858$	${ }^{3} 14777$		${ }^{65188223}$	
131	Rask- One Computing	rankone	0	201802-07	0	${ }^{12} 228$	k	${ }^{6} 51$	\checkmark	${ }^{275}$	${ }^{\square 142}$	${ }^{1020}$	${ }^{10} 502$	${ }^{15,12} \mathrm{~N}^{1.9}$
13.2	Eark Orie Computing	ratikone	1	2018-0.15	0	${ }^{2} 324$	k	${ }^{17} 186$	\square	${ }^{2} 169$	-	\sim	T	
138	Rank One Computing	rankone	2	201806-19	0	${ }^{00}{ }_{13,}$	k	${ }^{14} 113$	${ }^{2138}$	${ }^{3} 137$	${ }^{16} 358$	${ }^{19} 517$	${ }^{12} 1{ }^{1029}$	${ }^{3} 8.10 \mathrm{~N}^{10} 0$
134	Renk One Computing	rankcane	3	2018-06-19	0	${ }^{11} 133$	k	${ }^{15} 114$	${ }^{18138}$	${ }^{31} 137$	${ }^{4} 258$	${ }^{13} 515$	${ }^{18} 1027$	${ }^{3} 0.00 \mathrm{~N}^{1 / \mathrm{L}}$
135	Rank One Computing	x ankone	4	2018-10-99	0	${ }^{185}$	k	${ }_{36}$	${ }^{1301}$	${ }^{101}$	${ }^{12} 190$	-	-	${ }^{5} \mathrm{Cog} \mathrm{N} \mathrm{N}^{10}$
136	Rank One Lomputing	rankone	5	2018-20-24	0	${ }^{5} 133$	k	${ }^{12} 34$	${ }^{13140}$	${ }^{*} 144$	${ }^{17} 266$	${ }^{15} 525$	${ }^{131049}$	${ }^{80} 0.21 N^{10}$
137	Reallietwoorks	reahetworks	0	2018-06-21	96	${ }^{184} 4100$	1	${ }^{8}{ }_{244}$	${ }^{125} 4257$	${ }^{1832740}$	\bigcirc	-	\checkmark	
138	Reall	reathetworks	1	$2018066-21$	105	${ }^{15} 4104$	k	${ }^{3} 243$	${ }^{122} 35588$	${ }^{1910} 2107$	\sim	\checkmark	-	
139	Real (Networks	realhetworks	2	2018-10-30	105	${ }^{153} 4104$	k	${ }^{39} 245$	${ }^{101072005}$	${ }^{180} 2046$	${ }^{52} 4190$	${ }^{718683}$	${ }^{61} 15020$	${ }^{31.08 N 0}$
140	KanKar Ai	remarkai	0	2018-10-30	187	${ }^{182} 2048$	k	${ }^{125} 515$	${ }^{12}{ }_{5685}$	${ }^{125} 5723$	-	-	-	
141	KanKart Ai	retraxkai	1	2018-10-30	187	${ }^{154} 2048$	k	${ }^{9} 434$	$\left.{ }^{130} 56 \times 8\right)$	${ }^{10} 5751$	${ }_{1} 12475$	${ }^{80} 28726$	${ }^{76} 59618$	${ }^{{ }^{1} 0_{0,27} N^{1 / 2}}$
142	Sensetime Croup Lted	sensetime	0	2018-10-30	525	${ }^{1823} 4104$	1	${ }^{162} 715$	${ }^{6} 498$	${ }^{10} 501$	${ }_{1212}$	${ }^{48} 2281$	${ }^{50}{ }^{50332}$	${ }^{5} \mathrm{Coco} \mathrm{N}^{1+1}$
143	Sensetime Group Ltad	senstime	1	2018-10-30	52.5	${ }^{18}{ }_{4104}$	1	${ }^{143} 656$	${ }^{6} 516$	${ }^{135} 502$	${ }^{1146}$	$\mathrm{H}_{2} 201$	${ }^{37} 47 / 68$	${ }^{63} 009 N N^{1 / 2}$
144	Starinat Software	shaman	Q	2018-02-12	0	${ }^{155} 4096$	k	${ }^{113} 538$	$=$	${ }^{102} 523$	-	-	-	
145	Shaman Softyane	shaman	1	2018-(2-12	0	${ }^{19} 4096$	1	${ }^{121} 5657$	-	${ }^{1 \times 2} 54$	$-$	-	-	
146	Shorman Softerare	shaman	2	2018-02-12	0	${ }^{21} 8192$	k	${ }^{18}{ }^{1857}$		${ }^{18}{ }^{18} 688$	-	$-$	-	
14%	Shoman Sctavare	shaman	3	2018-06-30	0	${ }^{123} 2048$	1	${ }^{150} 704$	${ }^{2} 692$	${ }^{510}$	\checkmark	\bigcirc	-	
148	Shaman Software	shaman	4	2018-0f-30	0	${ }^{142} 2048$	k	${ }^{133} 642$	${ }^{1} \times 34$	${ }^{6} 267$	\%	-	-	
149	Shamar Softyare	staman	6	$2018-10-26$	0	${ }^{129} 2048$	k	${ }^{152} 706$	${ }^{2} 594$	${ }^{175} 603$	\bigcirc	\bigcirc		
150	Sharman Softostre	shaman	7	2018-10-26	0	${ }^{123} 2048$	k	${ }^{159} 709$	${ }^{1} 583$	${ }^{182}{ }_{606}$	*119	${ }^{2} 2411$	${ }^{39} 5007$	$025 \mathrm{~N}^{10}$
151	Shenzhen Inst. Adv. Tesh. CAS	S14T	0	2018-62-14	306	${ }^{51096}$	1	${ }^{81} 358$	-	${ }^{147} 1343$	-	-	-	
152	Stienduen Inst, Adv, Tech. CAS	SIAT	1	2018-06-30	521	${ }^{1 / 8} 2052$	1	${ }^{1888} 842$	${ }^{125} 4512$	${ }^{1884402}$	${ }^{8} 9103$	${ }^{78} 18291$	${ }^{1} 888745$	${ }^{*} 2,06 N^{1,0}$
153	Shenithen Inis. Adv, Tach. CAS	SLAT	2	2018-02-30	521	${ }^{159} 2062$	1	${ }^{195906}$	${ }^{326} 108$	${ }^{[84} 4884$	${ }^{3996056}$	${ }^{1} 18334$	${ }^{28} 3977$	${ }^{46.08} \mathrm{~N}^{10}$
154	Smilart	smilart	0	2018012.15	105	${ }^{121024}$	k	${ }^{31} 168$	\cdots	${ }^{141285}$	\bigcirc	\checkmark	-	
155	Smilart	smilart	1	201802-15	120	${ }^{5} 7024$	k	${ }^{18 \times}{ }_{662}$	-	${ }^{1381135}$	\cdots	-	-	
156	Smilart	amilart	2	2018-02-15	109	${ }^{81024}$	k	${ }^{123} 560$	\sim	${ }^{156} 1302$	\sim	-	-	

Nates	
1	fumberical computation (a,g. blac).
2	This multiplier exp presses the increase in templates size when k images ane passed to the template generation function.
3	ruachine in (3) counts lis dock ticks. Precision is somiewthat wrorse than that however.
${ }_{4}^{4}$	not be used numarically.

Table 8: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations, denoted by "-", are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.

	DEVEDOPER bull name	SHORT NeME	SER. wus.	Walidation DATE	$\begin{aligned} & \text { CONFTC }^{1} \\ & \text { DATA [MB) } \end{aligned}$	templategenzeation			SEARCH CURATDA ${ }^{\text {a }}$ MLIISEC					
						SIEE (B)	Muyr ${ }^{2}$	TME M M ${ }^{\text {a }}$)	$\begin{aligned} & \mathrm{L}=1 \\ & N=1.6 \mathrm{~A} x \end{aligned}$	$\begin{aligned} & \mathrm{L}=5 \mathrm{~g} \\ & \mathrm{~N}=1 . \mathrm{M} \end{aligned}$	$\begin{aligned} & 1=50 \mathrm{~N} \\ & \mathrm{~N}=3 \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{L}=50 \\ & \mathrm{~N}=6 \mathrm{M} \end{aligned}$	$\begin{aligned} & l=50 \\ & \mathrm{~N}=12 \mathrm{M} \end{aligned}$	POWER LAMY ($\mu \mathrm{i} 9$)
157	Smilart	smilart	4	201810.30	65	${ }^{3} 512$	k	${ }^{51} 167$	${ }^{1715878}$	${ }^{16} 15382$	-	-	-	
158	Smilart	smilart	5	2018.1020	562	${ }^{30} 2048$	k	${ }^{30} 464$	\bigcirc	-	-	-	-	
159	Symesie	synesic	0	2078.0215	332	${ }^{3} 512$	k	${ }^{3} 237$	\sim	${ }^{T 0} 162$	\cdots	-	-	
160	Synesis	synesis	3	2018 -1030	238	${ }^{3} 4096$	k	${ }^{19} 103$	${ }^{3} 784$	${ }^{18} 7996$	${ }^{5} 1928$	${ }^{53} 3861$	\$8748	${ }^{56} 0.07 \mathrm{JV}^{1 / 1}$
161	Testian	tevian	0	2018-02-16	666	${ }^{12} 2048$	1	${ }^{88} 394$	-	${ }^{50} 405$	-	-	-	
1612	Tevion	terian	1	2018-02-16	666	${ }^{212049}$	1	${ }^{3} 398$	-	${ }^{6} 403$	-	-	-	
163	Tevion	tevian	2	2018-02-16	666	${ }^{13} 2048$	1	\%397	-	${ }^{46} 402$	-	-	-	
164	Tevien	tevian	3	2018.0620	768	${ }^{182048}$	1	${ }^{4} 300$	${ }^{62} 473$	${ }^{105} 539$	-	-	\cdots	
165	Tevjan	tevian	4	2018.0620	708	${ }^{19} 2048$	1	${ }^{51} 298$	${ }^{30} 434$	${ }^{165} 587$	-	-	\sim	
$16{ }^{\circ}$	Tevian	tevian	5	20181030	773	${ }^{30} 2048$	1	${ }^{*} 416$	${ }^{10} 405$	${ }^{2} 407$	${ }^{19} 8.5$	${ }^{861785}$	${ }^{38} 3373$	${ }^{50} 0.14 \mathrm{Na}^{1 / 0}$
167	TigerlT Americas LLC	tigar	0	2018-06-29	333	${ }^{112} 2052$	k	${ }^{\text {P4 }} 428$	${ }^{11518222}$	${ }^{184}{ }_{2} 2942$	\bigcirc	-	\checkmark	
168	TigerlT Americas LLC	tiger	1	201800627	333	${ }^{142052}$	k	${ }^{3} 898$	T0	द1	\bigcirc	-	\cdots	
169	TigerlT Americas LLC	tiger	2	2018-1029	416	${ }^{18} 82052$	k	${ }^{103} 464$	${ }^{10101844}$	${ }^{10} 1019$	${ }^{70} 3829$	87519	${ }^{614865}$	${ }^{13} 0.83$ / ${ }^{10}$
170	TigerIT Americas LLC	tiger	3	2018.10 .30	416	${ }^{18} 20.52$	k	${ }^{3664464}$	${ }^{3}{ }_{1} 191$	${ }^{5} 189$	-	-	-	
171	Tangra Transportation Telanology	tonysi	0	2018-06-29	1701	${ }^{368} 2070$	k	${ }^{6} 190$	${ }^{178} 2256$	${ }^{1812272}$	-	-	-	
172	Tang Yi Transportation Technology	tongy ${ }^{\text {a }}$	1	2018006-29	1701	${ }^{26} 2070$	1	${ }^{*} 189$	${ }^{112} 22.239$	${ }^{182} 22257$	-	-	-	
173	Tsatuba	tockiba	0	20181030	961	${ }^{*} 1548$	k	${ }^{30} 990$	${ }^{1826} 6147$	${ }^{19} 96230$	${ }^{89} 12208$	225330	${ }^{76} 49988$	${ }^{9} 0.36 \mathrm{~N}^{1 / 2}$
174	Tostita	toshiba	1	2018-1030	961	${ }^{15} 2060$	k	${ }^{31} 931$	${ }^{1546002}$	${ }^{150} 6649$	-	-	-	
176	Wijisiden	7isidon	0	201806.20	208	${ }^{2} 1028$	k	${ }^{6} 337$	${ }^{10} 62006$	${ }^{182} 2566$,	-	\bigcirc	
176	Yisidon	pisidon	1	2018.1030	166	${ }^{20} 2062$	k	${ }^{153655}$	${ }^{1919} 43857$	${ }^{188}{ }_{4468}$	${ }^{10} 8429$	\$17210	${ }^{(1)} 34195$	${ }^{3} 2.40 \cdot \mathrm{~N}^{20}$
177	Wigilent Solutions	Sigiliant	0	2018-02-08	235	${ }^{151544}$	k.	${ }^{88} 883$	-	${ }^{10202059}$	-	-	-	
178	Vigilent Solations	Sigigilant	1	201802.14	243	${ }^{75} 2056$	k	${ }^{178739}$	-	${ }^{1025} 2075$	-	-	-	
17)	Wrgiliant Solutions	pigilart	2	200802-14	335	${ }^{9} 1544$	k	${ }^{77} 820$	$-$	${ }^{10} 2121$	$=$	-	,	
180	Wigilan Solutions	yigilart	3	2038.06.21	335	${ }^{\text {a } 1544}$	k	${ }^{138832}$		${ }^{10102307}$	\sim	-	-	
181	Yisiliant Solutiont	rigiart	4	201806-21	337	${ }^{2151544}$	k	${ }^{1 \times 8} 890$	${ }^{110} 2050$	${ }^{152} 2251$	-	-	-	
182	WrigilantSolutions	7jigilant	5	201810.20	335	${ }^{*} 1544$	k	${ }^{173} 778$	-	${ }^{15172720}$	-	-	-	
183	$\mathrm{V}_{2 \text { gilart }}$ Solutions	$7_{\text {Pregilant }}$	6	2018.1020	33	${ }^{3} 1544$	k	${ }^{13} 8834$	-	${ }^{19171713}$	-	-	-	
184	WiseorLabs	Yisionlabs	3	2018.02-16	624	${ }^{2} 256$	1	${ }^{3} 228$		${ }^{6} 5$	${ }^{35}$	${ }^{26}$	-	${ }^{6177.37 ~} \mathrm{~N}^{0} \mathrm{~S}$
185	XisionL.abs	Tisionlabs	4	2018006-22	299	${ }^{2} 236$	1	${ }^{50} 315$	${ }^{19}$	${ }^{10 / 1 / 2}$	${ }^{3} 20$	${ }_{2}{ }^{6}$	${ }^{3} 2$	$3260829 \mathrm{~N}^{\mathrm{D} /}$
186	Yikionlabs	Tjiscoulab	5	201806-22	305	${ }^{3} 512$	1	${ }^{55} 300$	${ }^{13} 54$	${ }^{1633}$	${ }^{7} 37$	${ }^{5} 56$	${ }^{7} 8$	${ }^{10} 166.84 \mathrm{~N}^{0.6}$
197	YisionLabs	visioxlabs	6	2078.1030	360	${ }^{* 1512}$	1	${ }^{51} 292$	${ }^{12} 36$	${ }^{18} 36$	${ }^{9} 39$	${ }^{3} 4$	${ }^{5} 53$	${ }^{5} 3211.89 \mathrm{~N}^{\text {0 }}$
1888	Yisionlabs	Yisionlabs	7	2018-1030	360	*512	1	${ }^{519} 93$	${ }^{14} 6.6$	${ }^{21} 63$	${ }^{10} 72$	${ }^{5} 80$	${ }^{3} 115$	${ }^{3} 27633 N^{\text {d/ }}$
189	Vocond	pocord	0	2018:02-1.16	872	${ }^{5} 608$	k	${ }^{11} 536$		${ }^{57} 268$	\bigcirc	-	\checkmark	
790	Yocond	Preord	1	2018012.16	872	${ }^{8} 668$	k	${ }^{512} 536$	-	${ }^{38} 268$	$=$	-	,	
191	Yocord	yocord	2	2018-02-26	924	72048	k	${ }^{19} 6535$		${ }^{3} 248$	\square	-	-	
192	Yecord	yseord	3	20180630	627	${ }^{3} 886$	k	${ }^{19} 714$	${ }^{215}$	${ }^{8247}$	-	-	-	
193	Vocold	90cord	4	201806030	627	${ }^{2} 336$	k	${ }^{129} 538$	${ }^{3} 216$	${ }^{83} 253$	\checkmark	-	$-$	
194	Yecond	pecord	5	2008-10.30	1035	${ }^{8} 768$	k	${ }^{179} 822$	${ }^{*} 158$	${ }^{10} 204$	${ }^{12} 383$	${ }^{3} 767$	${ }^{761466}$	${ }^{320.12} \mathrm{~N}^{1 / 15}$
195	Nocond	yocord	6	201810.30	1035	${ }^{36} 10240$	k	${ }^{19} 825$	${ }^{31} 170$	\$216	\bigcirc	-	\bigcirc	
196	Zhuthai Yisheng Electranics Tech.	yitheng	θ	201802-24	473	${ }^{18} 2108$	1	${ }^{19} 615$		${ }^{139} 587$	-	-	$=$	
197	Zhuhai Yisheng Electrenics Tech.	yitheng	1	2018.0619	474	${ }^{153} 304$	k	${ }^{7} 3887$	${ }^{711} 2228$	${ }^{15} 1108$	-	$-$	-	
198	Skanghai Yitu Tectrislogy	$y^{\text {yinu }}$	0	2018-02-12	1774	${ }^{19} 4136$	1	${ }^{12 \times 638}$	-	${ }^{8}{ }^{464}$		${ }^{3} 178$	-	${ }^{39} 0.12$ / ${ }^{1 / 1}$
19.9	Sianghai Yitu Tedtrology	yitu	1	2018-02-12	1944	${ }^{30} 4126$	1	${ }^{19} 990$		${ }^{56} 463$	-	-	-	
200	Fianghai Yitu Tectrology	9jua	2	20180621	20.7	${ }^{3354238}$	1	${ }^{18 \%} 830$	${ }^{19} 5516$	${ }^{192} 5417$	${ }^{7} 6101$	${ }^{3} 13264$	${ }^{639047}$	${ }^{152,25} \mathrm{M}^{0.9}$
201	Shanghai Yita Technology	yitu	3	2018-06.21	2077	${ }^{1 / 4} 4138$	1	${ }^{188} 878$	${ }^{127} 5248$	${ }^{191} 5242$	${ }^{786285}$	${ }^{\text {² }} 198829$	${ }^{3} 456621$	${ }^{61} 1.09 \mathrm{Na}^{13,1}$
202	Shanghai Yitu Technology	yitu	4	$2018-10330$	2119	${ }^{122} 20070$	1	${ }^{188} 910$	${ }^{52} 1288$	${ }^{14} 1212 \mathrm{C}^{3}$	${ }^{62} 2440$	$\left.{ }^{3}\right)_{5241}$	$\$_{9671}$	${ }^{\text {d }} 6.58 . \mathrm{M}^{101}$
203	Shanghai Yitu Technology	yitu	5	2019-1080	2043	${ }^{152} 20 \times 0$	1	${ }^{39} 861$	${ }^{50} 1235$	${ }^{141} 1197$	${ }^{62} 2508$	${ }^{2} 5003$	${ }^{396011}$	${ }^{420.55 ~}{ }^{2} \mathrm{~N}^{1 / 0}$

Notas	
1	numerical computation (eg, blas).
2	
${ }^{3}$	machine in (3) counts Ins dock ticks. Precision is somewhat wyorse than that however.
4	not be weed numerically:

Table 9: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations, denoted by "-", are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.

		RNigot iffetme					ENROEMOST R-SEMT				
	Fung $7 \times 0, n>4$			SEn ERyT					5st mixt		
*	SLlogstram	$\mathrm{N}=0.503 \mathrm{M}$	$\mathrm{N}=1.6 \mathrm{M}$	$\mathrm{N}=3.0 \mathrm{M}$		N=12.0ns	$\mathrm{N}=0.54 \mathrm{M}$	$\cdots=1.0 \mathrm{M}$	$2 \mathrm{c}=3.0 \mathrm{~cm}$	$\mathrm{N}=6.9 \mathrm{M}$	$\mathrm{N}=12.2 \mathrm{M}$
1	$3 \mathrm{DMO}-3$	${ }^{138} 0.3060$	${ }^{2 \times 10.34 \%}$	${ }^{52} 0.3889$	P0,4344		18.3850	${ }^{350} 0.4023$			
2	somi-s	(50, 1045	${ }^{\$ 60.1339}$				${ }^{1401332}$	${ }^{190169]}$	${ }^{7} 0.1638$	${ }^{2} 0.2392$	70.3087
3	3 ctanina 0	${ }^{3} 10.0852$	${ }^{10.1105}$	W0,1381	${ }^{60,191 \%}$		प0.1129	${ }^{3} 0,1405$			
4	Ructiers-3	प20.1015	ए20.1296				831205	80.1590	1, 181	${ }^{*} 0.2447$	${ }^{7} 8.3628$
5	ANKE-C	70,006 6	"0,0999				\$00868	${ }^{481199}$	${ }^{6} 0,143$	80.1812	${ }^{20,2624}$
6	दu4	${ }^{20,08484}$	${ }^{6} 00691$	${ }^{4} 01145$	${ }^{450.1459}$		${ }^{3 / 0,11 / 22}$	3,1305	${ }^{60} 0.1472$	${ }^{520.1783}$	"0,295
5	4Watis 8	${ }^{192} 0.2529$	${ }^{150} 0,2984$				${ }^{1} \times 3439$	${ }^{199} 0,3729$	*0,4034	70.4615	${ }^{2}(12,237$
8	3 \%onix-0	${ }^{7170.2262}$	${ }^{17} 0.8490$	(6).8840	520.2909		18×7795	(1)0,8114			
9	Frombr-2	${ }^{1850,7662}$	${ }^{1820} 03038$				${ }^{18 \times 107867}$	$\left.{ }^{1520}\right), 8246$	\%08511	${ }^{81} 0.8709$	9,8\%46
10	Camyl ${ }^{\text {a }}$	\$15.0281	Wh05以	${ }^{*} 0.06830$	${ }^{5 \%} 0.1971$		T100415	${ }^{50} 0.0736$			
11	canvid	${ }^{2 / 0.025 ?}$	W0,0505				${ }^{3} 0.0393$	\%0.0.47	50.008	50,2532	90.2781
12	coammt-0	${ }^{510.0387}$	+60434	${ }^{2} 0.0523$	${ }^{20.00784}$	${ }^{18} 0.1559$	20,455	${ }^{40} 0.04557$	${ }^{4} \mathrm{a}$, $\mathrm{m}^{3} 4$	${ }^{50.1394}$	$4{ }^{102029}$
13	cosent- 1	${ }^{680,05989}$	${ }^{2} 0.0513$				${ }^{50,0456}$	${ }^{4} 0.1557$	${ }^{20} 0.0754$		${ }^{5162029}$
14	COCEMNT/2	19.9220	${ }^{18} 0.0298$	"0,0\%0	${ }^{3} 8.0 .738$	${ }^{16} 0.1595$	${ }^{4} 0,0356$	${ }^{50.0 .475}$	${ }^{3} \mathrm{O}, \mathrm{c} 555$	${ }^{2} 0.1285$	${ }^{46,242}$
15.	cociknt-3	${ }^{360,0258}$	${ }^{2} 0 \times 342$	${ }^{1} 0.0450$	${ }^{30} 0.0842$	${ }^{35} 0.1864$	${ }^{3} 0.0851$	${ }^{3} 0,0515$	${ }^{50.0071}$	${ }^{20} 01374$	${ }^{80} 02488$
15	Coseniteeo	${ }^{10} 0.0889$	${ }^{4} 0.1256$				${ }^{140} 0.1400$	${ }^{50} 0.1628$	${ }^{10.1592}$	100.2205	${ }^{60} 0.235 \%$
17	COCNITES-L	${ }^{680.0598}$	${ }^{50,9 \% 7}$	${ }^{4} 0.01946$	${ }^{40} 0.1315$	${ }^{3} 0.2552$	${ }^{10} 00832$	${ }^{7} 0.1045$	\% 9.1244	${ }^{*} 0.1562$	50.2388
13.	cocmitec-2	${ }^{1} 0.0298$	30.401	${ }^{3} 0,0523$	${ }^{3} \mathrm{O}, 0852$	${ }^{3} 0.2298$	50.0435	${ }^{46} 0.0560$	${ }^{3} 0,0695$	${ }^{3} 00.0988$	${ }^{3} 8.1987$
19	cosmitec-3	${ }^{6} 0.0889$	${ }^{3} 0.0397$	${ }^{2} 0.0575$	${ }^{280.08337}$	${ }^{30} 0.2140$	${ }^{6} 000427$	${ }^{*} 0.0555$	* 0.0639	${ }^{8} 0.0938$	90.1840
20	DAMSA-1	${ }^{51} 0.010$	${ }^{102581}$				*0,0595	${ }^{59} 0.0055$	$0^{0,0909}$	W0.1199	${ }^{3 \times 0.1920}$
21	DERMELCOC 4	1280.3205	${ }^{180} 03922$	${ }^{(1) .4181}$	${ }^{50.4593}$		${ }^{19} 904380$	${ }^{350,4813}$			
22	Dermauces	${ }^{680} 0490$	${ }^{30} 0.0449$					T0.0009	\% 0.1172	${ }^{*} 0.1518$	\% 0.2516
23	DSRMALLSG-6	${ }^{36} 0.0278$	90.0280				1200420	150.0.542	${ }^{2} 0,0682$	001004	${ }^{4} 01312$
24	SVERAL-0	30.0460	${ }^{60,0676}$				*0.0.681	${ }^{7} 0.0821$	${ }^{3} 0.1223$		
45	EVLRAL	${ }^{28} 0.0285$	${ }^{*} 003360$				900883	\% 0.0518	${ }^{30} 0.0688$		
26	Everak ${ }^{\text {a }}$	${ }^{\text {TE0, }}$	${ }^{15} 03256$	32,0,0338	80.0589		${ }^{1700.0 .8 S 2}$	${ }^{170.03377}$	${ }^{36} 0.0473$	${ }^{38} 0.03833$	80.1653
27	Ersoran	${ }^{17 \%} 0.2911$	${ }^{120,0,3283}$	${ }^{510363}$	${ }^{80} 9.4154$			${ }^{1120.3993}$			
28	osprex-1	${ }^{1280.216 e}$	+0,24t?	${ }^{2} 0.0618$	W,2981		3×10.2990	130.3067			
29	comblaz	${ }^{100} 01088$	\%0,3)				${ }^{15} 0.1561$	${ }^{786} 0.19012$	"(0,2il)	70,2625	${ }^{10.3426}$
39	ciker	${ }^{10} 10.1104$	\% 21368	501010	${ }^{30,2066]}$	${ }^{7 \times 0.3067}$	D00985	${ }^{50} 0.1212$			
31.		${ }^{58} 0.0895$	\%0.1097				100859		\% ${ }^{0.12288}$	${ }^{4} 01502$	"0.2530
32	Mik-	${ }^{8} 2.0839$	${ }^{*} 01031$	${ }^{8} 01225$	${ }^{50} 0.1518$	${ }^{2} 0.2618$	C0.0921	${ }^{780.1013}$	* 0.1193	${ }^{50.1498}$	"0,2503
38	Hik-S	उ0, 21218	${ }^{20,03039}$	10,039	${ }^{20} 0.0661$		\%0,0339	50.8167	${ }^{20} 0.1989$	${ }^{3} 0.0967$	${ }^{102167}$
31	DEMLEM	${ }^{70} 0.0645$	W70882	*200986	${ }^{3} 0.1297$	${ }^{2} 0.1872$	${ }^{5100920}$	${ }^{5150.1235}$	${ }^{*} 0.13 \% 2$	\% 0.1528	${ }^{6} 022028$
35	DEMLS-1	${ }^{10} 0.0004$	\%0233]	${ }^{20} 0.0465$	${ }^{18} 80.0623$	${ }^{18} \mathrm{C}, 1578$	${ }^{10} 0.0444$	${ }^{20} 0.0540$	${ }^{50.046}$	${ }^{0} 0.0156$	${ }^{20.1518}$
36	DEMAL-2	${ }^{680} 0.0458$	\%0,554	${ }^{350,0668}$	${ }^{58} 0.0996$	${ }^{20.1706}$	${ }^{60} 0449$	${ }^{0} 0.00543$			
3 x	Wermars	${ }^{3} 0.0 .438$	${ }^{3} 0,03098$				910.7373	\%,0497	50.037	${ }^{2} \times 2.2387$	${ }^{140.4442}$
28	Tramices	10.0223	${ }^{3} 00278$	P0,0338	T0,478	${ }^{10.155 a}$	${ }^{4} 0.0326$	${ }^{19} 0.0399$	ए0, 472	गx.0.044	${ }^{0} 0.1659$
38	Dighix -	${ }^{3900661}$	${ }^{2} 00315$	${ }^{3} 0.13895$	${ }^{150.1588}$	${ }^{2501754}$	ST0.038	${ }^{20.0485}$	F00E62	${ }^{2} \times 10478$	${ }^{3} 01.1051$
49	DEACA - 6	${ }^{\text {r }}$, 0,0255	$\underbrace{}_{0} 0.316$	${ }^{20,0383}$	${ }^{140.0581}$	${ }^{3} 0.2046$	\% 0.0377	20.4.458	30.0550	"0.0760	${ }^{4} \times 1.224 .2$
41	पuncilicz 2	${ }^{6 \times 50.6816}$	${ }^{50} 0.743$	${ }^{20,75 \times 33}$	अ10.7267		"007092	W70.7519			
42	(1) Cocer 1	200.1400	${ }^{188} 0.1796$	\$0.2169	${ }^{38} 0.2741$		${ }^{190.1763}$	7180.2143			
45	anceane 3	\% 0.0419	*0.1287				${ }^{2} 0.1349$	${ }^{315} 50.1703$	30.1986	00.2379	*0.3157
44	DNNO:AYSICS -1	350.0835	${ }^{7800628}$				58.1106	${ }^{20.1340}$	${ }^{3} 0.1418$	${ }^{2} \times 1418$	311418
45	SSETEMS-0	${ }^{10} 0.0485$	-0.0639	*0.0795	${ }^{3} 0.1057$	${ }^{30.2072}$	"00076	12.c912			
46	Es:St EMSA	${ }^{37} 8,0480$	30.0627	89.0784	* 0.1054	${ }^{30} 0.2081$	30,0702	${ }^{9} 0.903$			
47	ispstems-2	${ }^{520.0054}$	${ }^{3} 0.3545$	\% 0.069			${ }^{22} \mathbf{0} 0.0612$	${ }^{32} 0.0818$	20.2006	$\sqrt[5]{14415}$	${ }^{820,2372}$
48	cexst ims-3	${ }^{12} 0.0801$		${ }^{3} 0.0587$	${ }^{2} 20.6881$	${ }^{280.1992}$	300464	$5^{80,0620}$	${ }^{0} 0,0840$	${ }^{60.1324}$	$0_{0,2417}$
49	LOOKMam-3	${ }^{46} 0.0835$	${ }^{1000425}$				${ }^{3} 8.00772$	${ }^{28} 0,0463$	${ }^{3} 0,0441$	20.0758	${ }^{3} 0.1560$
50	KEGTL	${ }^{31}$	80.1023	${ }^{20} 0.1228$	4\%.1429	${ }^{25} 0.2348$	${ }^{3} 0,0895$	${ }^{50} 0.1085$	${ }^{0} 0.1287$	${ }^{5} \times 0.1506$	${ }^{50.2288}$
51	MEOMIT-1						${ }^{3} 00586$	${ }^{20} 0.0746$	${ }^{40.0696}$	${ }^{7} 0.1338$	${ }^{10202761}$
52	\%eskopocus ${ }^{\text {a }}$	1780.5002	${ }^{150,9213}$	* 0.9342			${ }^{18} 0,9119$	${ }^{385} 0.9215$			
52	Mcriotocus-5	${ }^{1820.3599}$	${ }^{15} 0,9835$				${ }^{18098738}$	T86, 8361	${ }^{205563}$	${ }^{35} 088 \% 00$	${ }^{3} 0,8958$
34	Microeorlol	T50,0208	${ }^{6} 0.02392$	320,0361	${ }^{120.0535}$	${ }^{50.1502}$	${ }^{2} 0.0082$	${ }^{8,0,0443}$	30.0544	${ }^{2} 0,0787$	${ }^{28} 0.1733$
55	Mcrossopr-1	120.0214	${ }^{15000299}$	${ }^{120.0373}$	${ }^{13} 0,1542$	${ }^{18} 0.1585$	${ }^{2} 0.0339$	${ }^{3} 0,0449$			
56	Mcrosper-2	${ }^{250.6252}$	20.3045	50.0425	${ }^{18} \times$. 0660	${ }^{18} 8.1558$	50,0387	${ }^{3} \mathrm{C}, 0503$			
$5 x$	Metesoert-3	${ }^{36} 0.012 \mathrm{z}$	${ }^{20} 0.9193$				${ }^{10} 601223$	${ }^{18} 0,0304$	${ }^{18} 0.0384$	${ }^{35} 50.05 \% 0$	${ }^{3016085}$
58	maxcsori-4	${ }^{30} 0.0128$	W60193	${ }^{8} 0.0241$	${ }^{9} 0.0405$	${ }^{17} 0.1628$	${ }^{18002099}$	${ }^{18} 0.00888$	${ }^{15} 0.0860$	${ }^{15} 0.0580$	${ }^{18} 0.1576$
59	3xeroseri- 5	ए0.019	\%0017	${ }^{5} 0.0218$	${ }^{7} 0.0 .487$	${ }^{120.1654}$	${ }^{12} 0.0201$	${ }^{150.02979}$	"0,0447	${ }^{2} 0.05055$	${ }^{515.1519}$
60	ucriospera	50.0058	50.08\%	50.0170	${ }^{6} 0.0 .284$	${ }^{19} 0.1664$	${ }^{5} 0,0109$	5 50.6177	${ }^{5} 000838$	30.1343	${ }^{3} 9.1544$
51	NEE-2	${ }^{30} 0.0483$	${ }^{3} 00604$	"0.0726	36.0989	${ }^{3} 0.2378$	${ }^{10} 0.0662$	${ }^{53} 0,0815$	W0.06EI	${ }^{3} 0.1193$	30.1994
62	NEE- 1	7.071	"0.08\%\%				${ }^{3} 0.0889$	${ }^{7} 0.118181$	${ }^{2} 0,127 \mathrm{k}$	${ }^{5016} 5$	${ }^{*} 0.2312$
bs	NESE2	\%cant	[030 24	4\%M\%	${ }^{*} 0.617$	3, \%9\%	${ }^{10,0040}$	3×8.3442	\%102\%	\% 78.8%	34723:
64.	Nec-3	T3,018	T0,0021	T0,026	40.0113	10.0988		0.0044	10.0445	T0,095	Ta,bsa
65	NEDROTECHNOCDSY 3	${ }^{151} 0.5869$	${ }^{1 \times 10.6393}$				${ }^{2} 0.5959$	${ }^{7172} 0.6649$	${ }^{8} 0.7217$	${ }^{3} 0.7852$	80.8336
66.	wraratecsmowask	${ }^{50} 8.0427$	\%005/5		${ }^{30.0054}$		"0,0493	${ }^{7 \times 0.06556}$	${ }^{40} 0.0 \times 10$	${ }^{3} \times 1.1167$	
68.	Neungtectnotocx	${ }^{50} 0.0884$	10,5\% ${ }^{2}$	S0,0516	${ }^{30,0811}$	\% 0.1366	${ }^{120} 0.0422$	${ }^{38} 0.05654$	${ }^{2} 0.00205$	*, 0,1988	${ }^{6} 0 \times 2014$
63	SIENTLSND 4						ए04015	${ }^{\text {T00 }}$ / 4405	"04799	${ }^{2} 0.5133$	
62	Nashis 3	${ }^{75 \times 0.204,9}$	${ }^{176} \mathbf{0 , 9 9 5}$				${ }^{1 / 29863}$		${ }^{*} 0.5880$	*0.9836	
र0	NTECHLSE-1	${ }^{68} \mathrm{ROEs} 18$	${ }^{50} 90666$	${ }^{40} 10.080$	\% 30.1158		00.0677	${ }^{40} 0.0830$	${ }^{3} 61083$	${ }^{40} 0.1306$	\$4.1948:
2	NTPOHLAB-1	\%0.0634	${ }^{2} 00818$	281006	${ }^{728} 0.19372$	${ }^{350.2162}$	30.8885	${ }^{8} 0.1121$			
72	WTECHLSE3	26,03\%9	${ }^{46} 0.4434$				"0, 0.45	${ }^{2} 0.0561$	${ }^{3} 0.069$	30,1033	${ }^{20} 01593$

Table 10: Identification-mode: Effect of N on FNIR at high threshold. Values are threshold-based miss rates i.e. FNIR at FPIR $=0.001$ for five enrollment population sizes, N. The left six columns apply for cnrollment of a variable nutmber of images per subject. The right six columns apply for enrollment of one image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are nissing because less accurate algorithms were not rum on galleries with $N \geq 3000000$. Thronghout biue superscripts indicate the rank of the algorithm for that column.

| $2019 / 09 / 11$ | FNIR $(N, R, T)=$ | False neg. identification tale | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation 0

MISSIS SELOWTHRESHOLD，T FMad（N，T＂ $0, \mathrm{k}$ SL		ENROLIFETMAE astasert favt 2018					BNROL MOST KgCENT EATASER RKOT 2018				
4		$1 \mathrm{~V}=0.64 \mathrm{M}$	$\mathrm{N}=1 . \mathrm{CM}$	R $2=30 \mathrm{M}$	14．6．0．12	W6， 12.01 N	$N=0.64 \%$	WCl． 51 C	W 3.0 M	$\mathrm{N}=6.0 \mathrm{M}$	$\mathrm{M}=12 \mathrm{COM}$
7	NTEGHLAE－f	${ }^{2} 0.0253$	${ }^{5000388}$	${ }^{20} 0.4333$	${ }^{1} 0.0692$	201255	${ }^{2} 0.0337$	${ }^{3} 0.0431$	${ }^{2} 00545$	${ }^{3} 0.0649$	${ }^{22} 0.1528$
74	NTECHIAB－5	\％00269	90.0347				${ }^{20} 0.0358$	${ }^{22} 0.0448$	\％00561	${ }^{80.0785}$	${ }^{17015072}$
25	NTECHLAB－6	40.0227	${ }^{2} 00301$	${ }^{16} 0 \cos 5$	${ }^{2} 0.0654$	\％ 0,1397	${ }^{12} 0.0311$	1800399	${ }^{19} 000496$	70nces	2401548
\％	QUANTASOFT－1	Ts909215	उ609915				${ }^{13} 0.6399$	${ }^{120} 0.6399$	${ }^{53} 56399$		${ }^{76} 0.6399$
77	GANKONE－9	${ }^{50} 8.4885$	${ }^{103} 0.1788$	${ }^{3} 0,2210$	210，32\％0	${ }^{33} 0.4758$	${ }^{16} 6.1899$	${ }^{120} 0.2192$	${ }^{18} 081635$	${ }^{29} 0.25 \%_{2}$	\％ 04201
78	GGWKONES－1	W20．1211	${ }^{24} 001549$	${ }^{150,1804}$	20，23／1	120．3530	${ }^{175} 0.1542$	${ }^{1001633}$			
72	Pank（ans－2	Tan744	\％r0943				${ }^{580,0908}$	${ }^{8} 012000$	${ }^{4401382}$	${ }^{10} 10774$	${ }^{32} 02 \times 2 \times 36$
30	RSNKTNEE3	${ }^{36} 0,0744$	550.6543	${ }^{2} 803120$	${ }^{45} 0.1790$	40，2046	40.0988	$4{ }^{4} 0.1200$	${ }^{31301382}$	3a1744	${ }^{1} 10.2636$
81	Bxerrome－4	${ }^{16} 0,1265$	${ }^{2101545}$				${ }^{20} 0.1631$	190．1951	${ }^{3} 0,4211$		
22	Bacrionk－ 5	${ }^{41} 0.03 .47$	\＄000447	${ }^{32} 0.087$	${ }^{10.0847}$	30.2549	50.08199	${ }^{51} 10.1017$	${ }^{3} 010728$	${ }^{3} 0.0884$	${ }^{210.2031}$
83	CEALNETMOES50	${ }^{29} 0.20088$	${ }^{710} 02476$	${ }^{31} 0.28837$			T00．2003	${ }^{710} 91.2362$			
84	aER 2 SEETMORE－2	1110．1689	7100.2149				180．1074	${ }^{150} 02031$	${ }^{3} 02691$	${ }^{3} 0.318 \mathrm{~h}$	${ }^{620,3261}$
85	REadsmkat－2	${ }^{76} 000731$	＂00991				${ }^{3} 0.0971$	${ }^{29} 01264$	30.1495	${ }^{81} 0,1928$	
86	SERSETMAE－0．	${ }^{9} 000118$	${ }^{3} \mathbf{0 . 0 1 6 5}$				${ }^{11} 0.0184$	W0．023	Y0．0295	${ }^{3} 0.0427$	${ }^{3} 0,7287$
87	SESNSETMAE－1	T0．012	${ }^{10.6175}$				T0．018	$\pi 0.0245$	${ }^{110.4304}$	${ }^{31} 0.0448$	50.344
88	SHAMASC－3	${ }^{2603509}$	${ }^{129} 0.3921$	${ }^{65} 04425$			${ }^{38} 80.4179$	${ }^{15}$			
88	SHAMCANT－2	85，0934	201112				380.1286	${ }^{3} 0.1436$	901610	${ }^{20} 07801$	$5 \mathrm{Cu} 248 \mathrm{8a}$
98	835－1	${ }^{132} 0.2605$	${ }^{16} 60.2727$	${ }^{57} 0.2758$			0.8150	${ }^{6} 9.0201$	70.0260	${ }^{3} 0,0080$	${ }^{3} 0.100^{3}$
91	815T－2	${ }^{27} 0.2135$	${ }^{180} 0.2239$				90.0178	${ }^{10} 0.0242$	${ }^{10} 0.0301$	${ }^{16} 0.0434$	59012\％
92	SMILART－4	${ }^{172} 08381$	${ }^{140} 00569$				1780.9230	18909683	${ }^{37} 09913$		
95	Sybesis 3	${ }^{154} 0.4748$	${ }^{1720.5036}$				${ }^{104} 0.5383$	${ }^{1 \times 6} 0.5832$	${ }^{82} 0.6123$	${ }^{5} 0.6489$	${ }^{2} 0.6808$
9	TEVIMN	80.068	${ }^{720.6878}$	${ }^{45} 0.1032$			30．05 2	＊0．1201			
95	TEYTAOS 5	${ }^{6} 0.0518$	${ }^{2} 0.8667$				720．0717	\％008\％	${ }^{3} 0.1094$	${ }^{18} 0.1338$	${ }^{31} 0.2879$
36	TOEER－1）	${ }^{160} 02859$	${ }^{12} 2^{0,3,361}$	${ }^{000365 \%}$	${ }^{7} 0.4139$		${ }^{3 \times 3} 0.3452$	${ }^{180} 0.3921$			
97	T15ER－2	${ }^{6} 000511$	${ }^{50} 0.0698$				\＄0，0671	30．0888	${ }^{3 \times} 01065$	${ }^{2} 0.3361$	30.2284
38	TONGTTEANG－1	${ }^{7} 000658$	${ }^{7} 0.0835$	40.1017	${ }^{41} 0.1328$		50，0545	${ }^{5} \mathbf{5} 010.1693$			
98	TEVAIPs－0	ए，0，0374	${ }^{2900529}$				10.0488	${ }^{13} 0,0,0648$	उप，0809	3×0.1170	${ }^{43} 0.2140$
109	vD－9	780，0， 686	${ }^{\text {T1／}} 0.90948$	${ }^{50} 6.2242$	${ }^{630.9331}$		70.0 .8892	180，${ }^{10317}$			
191	VD－1	${ }^{308} 0.1312$	${ }^{-1080.1654}$				M0，1矿	${ }^{133} 182936$	＂02372	7202759	${ }^{20} 03814$
132	Yigikanta murcons－3	1503051	${ }^{2120.35 E 3}$	${ }^{88} 103861$	W0，381		Tए0．3648	${ }^{150} 04097$			
100		${ }^{31} 0,0260$	${ }^{3} 000347$	${ }^{22} 0.0444$	${ }^{23} 0.0578$		${ }^{39} 0.0394$	${ }^{32} 0,0506$	${ }^{2} 00029$	${ }^{2} 0.0902$	
104	\％ 16 CONLABC－ 1	W0．0294	${ }^{3} 0.0402$				ए0．0452	ए0，060	${ }^{3} 00053$	${ }^{3} 0.0282$	${ }^{31} 0.1893$
108	人）	${ }^{260.0250}$	${ }^{39} 0.0 .363$	100．0441	P0．0628	${ }^{21} 0.1727$	${ }^{40} 00396$	510.0531	${ }^{3000554}$	\％ 0.0878	32．1894
106	FIEIONLAMS－6	W0．0131	${ }^{40.0185}$				${ }^{130.0212}$	${ }^{150,0289}$	${ }^{14} 000359$	${ }^{36} 000571$	${ }^{15} 01572$
107	स3SIORHLABS－7	120．0131	${ }^{12} 0.0185$	$\sqrt{0.0422}$	${ }^{30} 0.0 .612$	${ }^{0} 0.1485$	${ }^{14} 0.0211$	${ }^{14} 0.0289$	${ }^{13} 0,0359$	${ }^{13} 0.0669$	${ }^{4} 0.7576$
108	vocould－3	000063	ग0．192	${ }^{5201507}$	500，3361		${ }^{350,0973}$	${ }^{9} 01258$			
109	YOCDRD－5	${ }^{6} 000785$	${ }^{14} 0.1076$				\＄9．1261	${ }^{172} 011697$	${ }^{36029327}$	${ }^{750.3286}$	750.4628
110	YIFHENG－1	${ }^{150} 102539$	${ }^{19} 96.3002$	［10，3366	${ }^{56} 0.3892$		${ }^{28} 0.3025$.	${ }^{1360.3453}$			
111	YTEDA	\＄0，02\％	${ }^{30} 00358$	${ }^{2800408}$	${ }^{20.0636}$	${ }^{8} 0.1389$	${ }^{36} 0,0588$	20．0502	${ }^{2} 0.0622$	${ }^{2000862}$	${ }^{25} 0,1621$
112	xapr－1	${ }^{32} 0.0261$	${ }^{2} 00341$	${ }^{21} 0.0434$	${ }^{1 / 2} 0.0611$	60.1361	29.08365	${ }^{3} 0.0472$			
115	YIT0－2	${ }^{5} 00000{ }^{\circ}$	${ }^{6} 0.0138$	${ }^{8} 0.0074$	${ }^{50,02274}$	${ }^{3} 0.1180$	${ }^{6} 0.4156$	30.0204	${ }^{5} 00258$	70.6082	30.7241
11.4	virn－3	${ }^{2} 0.01$ 检	${ }^{2} 9,0139$				80.0165	${ }^{8} 0.1213$	${ }^{8} 0.0266$	＂0．c883	70,7248
118	\TTH 4	${ }^{6} 000054$	3 couma	300008	उप，${ }^{\text {a }}$	＋0．1153	30.0693	${ }^{3} 0.123$	${ }^{4} \mathrm{cosis}$ ¢	＂0．68？	6.9097
116	Yeve 5	${ }^{2} 0.0088$	${ }^{1} 0.0068$	$4^{4} 0,0100$	${ }^{2} 0.0128$	30.1121	10.0101	10.0128	50.0163	${ }^{3} 0.6294$	${ }^{5} 0.1118$

Table 11：Identification－mode：Effect of N on FNIR at high threshold．Values are threshold－based miss rates i．e．FNIR at FPIR $=0,001$ for five enrollment population sizes，N ．The left six colunts apply for enrollment of a variable number of images per subject．The right six columns apply for enrollment of one image．Missing entries usually apply because another algorithm from the same developer was run instead．Some developers ave missing because less accurate algorithens were not run on galleries with $N \geq 3000000$ ．Throughont biue superscripts indicate the rank of the algorithm for that column．

| $2019 / 09 / 11$ | FNIR $(N, R, T y=$ | False neg．identification rate | $\mathrm{N}=$ Num．enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- | | $\mathrm{T}=0 \rightarrow$ Investigation |
| :--- |
| 17.24 .52 |

Table 12: Investigation-mode: Effect of N on FNIR at rank 1 For five enrollment population sizes, N, with $T=0$ and FPIR $=$ 1. The left five columns apply for consolidated enrollment of a variable mumber of lifetime images from each subject. The right five columns apply for enrollment of one recent image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N>$ 1600000. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

$2019 / 09 / 11$	FNIR $(\mathbb{N}, R, T)=$	False neg. identification tate	$\mathrm{N}=$ Num, enrolled subjects	T= Threshold	$\mathrm{T}=0 \rightarrow \text { Investigation }$
		False pos. identification tate			

$\frac{\text { MUSSAS DOT AT RANK } 1}{\text { ROR }(9 \mathrm{M}, \mathrm{~T}-0, \mathrm{R}=1)}$		ESMRQL LIFETIME						ENROL MGET RECENT					
		DNCAS ¢T: FKVT 2018						DATASET- ERVT 2013					
\#	astoparins	$\mathrm{N}=0.643 \mathrm{~d}$	$\mathrm{N}=1.6 \mathrm{M}$	Ne3, 0 M	$\mathrm{N}=6,0 \mathrm{M}$	S3 212.0 ME	$0 \mathrm{~N}^{6}$	S 20.0 .64 M	$\mathrm{N}=2.6 \mathrm{M}$	$\mathrm{N}=3.0 \mathrm{M}$	$\mathrm{N}=\mathrm{a}, \mathrm{DD}$	$\mathrm{N}=12 . \mathrm{CM}$	a N^{5}
75	ATECHT $*$ - -2	${ }^{3} 000030$	32004a	${ }^{2} 00049$	${ }^{22} 6.0060$	${ }^{2} 00005$	$120.0000 \mathrm{~N}^{\mathrm{c} 3 \mathrm{~m}} \mathrm{~F}$	330.0056	${ }^{3300606}$	${ }^{20} 0.00073$	${ }^{2} 800002$	800107	${ }^{0} 0.0003 \mathrm{~N}^{\text {N2u }}$
74	NTECMLAB-A	"000088	10.0039				\$0,0009 N ${ }^{03}$	80.0651	29, 0.064	${ }^{2} 0,00 \% 6$	${ }^{3} \mathrm{0} 00092$	\$0.0112	
75	NTEE HLAB-6	${ }^{2000034}$	\%00.0134	${ }^{18} 0.0042$	${ }^{19} 0.0052$	${ }^{18} 0.0066$		150,0047	${ }^{24} 000059$	स 40.0063	${ }^{3} 0.0181$	${ }^{2} \mathrm{Cucos} 8$	W0.0002 $\mathrm{N}^{\mathrm{Natm}}$ क
76	Qusivtasore-1	${ }^{12000857}$	${ }^{15} 9.9857$				\rightarrow	${ }^{182} 0.2198$	${ }^{158} 0.2798$	${ }^{4} 812138$		302198	${ }^{170} 0.2198 \mathrm{Nm}$
\%	Aankone-6	${ }^{120} 0.0255$	${ }^{108} 0,0819$	30.0066	${ }^{32} 0.0425$	${ }^{3} 0.0436$	${ }^{60} 0.0014 \mathrm{~N}^{\text {NJ23 }}$	15000375	${ }^{13} 00.0455$	${ }^{0} 0,0514$	80.0554	\%0.0654	${ }^{8} 0.0032 \mathrm{~N}^{\text {TVED }}$
79	farvicivel	${ }^{112} 0001.52$	330.0194	${ }^{15} 00.0224$	30.0260	${ }^{350.0302}$		150.02226	${ }^{36} 0.0 .4278$				
*	RALVHCN\%-2	${ }^{2} 0.017$	510,0149				${ }^{320,0003 ~} \mathrm{~N}^{0 \times 2 \mathrm{a}}$ 65	${ }^{16} 0.0181$	${ }^{4} 10.00221$	${ }^{8} 80.0250$	${ }^{50,02088}$	${ }^{3} 000339$	${ }^{320.0012 ~}{ }^{\text {122] }}$
80	RANESONE 3	${ }^{9} 0.011 ?$	80.0149	40.0272	4200200	40.00236	${ }^{10,0005}$ N ${ }^{102885}$	${ }^{10} 0.9281$	${ }^{1010} 0.0221$	${ }^{2} 0.0250$	\$ 0,0288	40.0380	${ }^{1} 0.0012$ M ${ }^{\text {M2] }}$ Ef
81	23shroms-4	120.0246	${ }^{10} 0.0 .0318$					${ }^{19} 90.0351$	${ }^{132} 0.0441$	7 7.0508			
82	RAguEONS-5	m 0.0 .058	580,0072	${ }^{3} 0,0,0086$	${ }^{31} 0.0103$	${ }^{32} 0,0122$		50.00102	${ }^{80} 0.0120$	$\sqrt{30,013 \%}$	30.0158	${ }^{3} 0.0182$	
8	REATVETYOCKS -8	${ }^{151} 0.03897$	70,0,443	60.0527			$76.0107 \mathrm{M}^{1020821}$	7200.0380	${ }^{191} 0.0426$				
24	P. EAZavETwOR15-6	120.0840	Tr90.0.62a				56,0004 ${ }^{\text {U92\% }}$	${ }^{1250,03 / 3}$	T250.0418	${ }^{2} 0.0 .0487$	${ }^{19} 0058 \%$	${ }^{3} 0,0606$	${ }^{82} 0,0017 \mathrm{~N} \mathrm{~N}^{0.83 \%}$
85	SEkIECKA1-2	* 0.0047	${ }^{5000062}$					${ }^{5 \times 0,0085}$	90.005	+600122	\$0.0145		${ }^{2} 0,0004 \mathrm{~N}^{1025}$
86	SEASETEAE-0	${ }^{13} 0.0016$	${ }^{13} 0.0018$				-	\$0,0046	${ }^{3} 60,1048$	${ }^{17} 0.0050$	${ }^{16} 000053$	${ }^{15} 000057$	${ }^{30} 0.0018 \mathrm{~N}^{\text {N/7\% }}$
87	SENS ESTMET	${ }^{12000016}$	${ }^{11} 0,0018$				- ${ }^{-}$	${ }^{76} 0.004 \mathrm{t}$	${ }^{97} 00048$	${ }^{15} 0.0050$	${ }^{15} 0,0053$	${ }^{15} 0.00662$	${ }^{3} 0.0012 \mathrm{~N} \mathrm{~N}^{\text {J125 }}$ i5
39	SHAMANV-3	${ }^{15} 0.0808$	${ }^{128} 8,0969$	${ }^{680,1091}$			${ }^{37} 0.0560 \mathrm{~N}^{-133} 3$	${ }^{150} 010104$	${ }^{155} 012266$				${ }^{1640.009 \% ~} \mathrm{~N}^{0 / 20050}$
29		${ }^{1250.0290}$	${ }^{105} 0.0310$				${ }^{108} 0.0106 \mathrm{~N}^{0065}$	${ }^{13} 0000397$	${ }^{125604622}$	$70.04 \div 2$	${ }^{35} 00458$	${ }^{2} 000499$	$1070.0139 \mathrm{~N}^{0065 ~ 10 ~}$
90	569-1	${ }^{170} 02638$	${ }^{18} 90.2639$	${ }^{6} 02640$			${ }^{100} 02618 \mathrm{~N}^{00013}$	T0,0035	${ }^{31} 0.0039$	${ }^{10} 0.0041$	${ }^{3} 60044$	${ }^{3} 00049$	${ }^{55} 9.0010 \mathrm{~N}^{\text {JTSE 17 }}$
9	Sisi-2	${ }^{171} 0.2127$	${ }^{18} 81.2128$				${ }^{129} 02.115 \mathrm{~N}^{00002}$	${ }^{28} 0.0183^{5}$	${ }^{11} 0.0040$	${ }^{12} 0.0042$	${ }^{11} 00045$	${ }^{5} 00049$	${ }^{57} 0.9011 \mathrm{~N}^{002213}$
92	Shmaser-4	1800.8189	${ }^{187} 0,0591$				${ }^{106} 0.0094 \mathrm{~N}^{016812}$	${ }^{180} 09176$	${ }^{156} 09848$	$8_{0} 89908$			${ }^{119} 04706 \mathrm{~N}^{0013}$
93		${ }^{192} 0.1133$	${ }^{13} 0.1350$				${ }^{1050.0098 ~}{ }^{010}$	40\% 1.1478	150.1721	\% 0.185	${ }^{2} 0.2108$	20,2388	${ }^{188} 0.0184 \mathrm{~N}^{015035}$
34	Tertak ${ }^{\text {a }}$	${ }^{3} \mathbf{0} 0,0058$	810,0080	${ }^{5} 0.0093$			${ }^{16} 00001 \mathrm{~N}^{103+4}$	${ }^{2} 000135$	${ }^{76} 0.0134$				
5	TEVLAN-5	${ }^{2} 0.00040$	${ }^{150,0053}$				${ }^{210,0001 ~}{ }^{\text {W, }}$	${ }^{10,0074}$	${ }^{50} 80.003_{2}$	30.0104	${ }^{2} 000125$	${ }^{12}$	${ }^{32} 0.0003 \mathrm{~N}{ }^{\text {Na }}$
96	TCERR-0	${ }^{19} 0003 \mathrm{Cd}$	${ }^{170} 0.0489$	\%0.0565	${ }^{55} 0.0578$		8 ¢1.0709 N^{026871}	1350.0434	1420.0638				
88	Treers 2	${ }^{3} 0.0031$	${ }^{2} 000044$					${ }^{20} 0,0063$	${ }^{3} 800075$	${ }^{32} 2.80083$	${ }^{3} 0.0107$	${ }^{8} 0.0125$	${ }^{16} 0.0003 \mathrm{~N}^{1235} 36$
98	TCMCMMEANS-1	${ }^{81} 90006$	W5.0114	${ }^{25} 0.0127$	${ }^{38} 00148$		${ }^{80} 60.0007 \mathrm{~N}^{\text {C198 } 35}$	${ }^{520,0080}$	${ }^{52} 0.0095$				${ }^{51} 0.0006 \mathrm{~N}^{\text {M17 }}$
98	Tosesen 0	3000026	${ }^{3} 0.0063$				$\left.{ }^{18} 10.0001\right)^{1 / 28 \%}$	${ }^{32} 000688$	${ }^{32} 0.0068$	${ }^{2} 0.0076$	${ }^{3} 000085$	${ }^{5 / 0,0178}$	${ }^{5} 00001 \mathrm{~N}^{4 \times 8} 72$
10 年	200-0	10.0.583	${ }^{143} 0.4303$		${ }^{52} 0.5281$			${ }^{192} 0.4073$	${ }^{15} \times 14751$				${ }^{\text {T10.0.0.31 }}$ NTEड क
111	Q0. 1	${ }^{30} 0.0184$	${ }^{1020,0221}$					${ }^{128} 0.0256$	${ }^{1550.6502}$	${ }^{23} 0.0341$	${ }^{20.0389}$	${ }^{2} 00.443$	
102	ngican Map untroje-3	${ }^{18} 0.0410$	${ }^{120} 0.0549$	${ }^{50.0554}$	${ }^{40} 0.0654$			${ }^{148} 0.0561$	${ }^{1650.0719}$				${ }^{2} 00015 \mathrm{~N}^{0.7} 30 \mathrm{C}$
102	yısroncalas-3	Fe,003?	${ }^{1 / 0,0050}$	${ }^{3} 0.00076$	${ }^{9} 0.0130$		${ }^{5} 0,0000 \mathrm{M}^{086505}$	${ }^{1 / 200070}$	${ }^{20} 0,0089$	${ }^{8} 0.0124$	8,0.0185		
104	Vistomases-4	14000016	${ }^{140,0,020}$				${ }^{30} 0.0001 \mathrm{~N}^{0200543}$	${ }^{18} 000033$	${ }^{13} 0.0044$	${ }^{14} 0.0049$	${ }^{19} 0.0862$	${ }^{3} 00098$	${ }^{6} 00001 \mathrm{~N}^{285}$ [1]
105	Yastonlase-5	${ }^{40,0015}$	${ }^{12} 0.0018$	${ }^{2} 10.0020$	${ }^{10} 0.0028$	${ }^{10} 0,0040$	${ }^{7} 0,0800 \mathrm{~N}^{0332+50}$	${ }^{3} 000035$	${ }^{3} \times 100041$	${ }^{12} 0.0045$	${ }^{150.0054}$	${ }^{17} 000668$	${ }^{15} 000002 \mathrm{~N} \mathrm{~N}^{0238588}$
106	W152cioriabs-6	${ }^{10} 00018$	30.0015				${ }^{5} 0.0002 \mathrm{~N}^{01+618}$	${ }^{7} 000030$	70.0039	${ }^{6} 0,0037$	${ }^{7} 000042$	${ }^{18} 0.0057$	${ }^{9} 0.0002 \mathrm{~N}^{07717}$
10%		${ }^{50} 00013$	${ }^{3} 0.0014$	S10016	${ }^{50.0018}$	${ }^{5} 000002$	${ }^{35} 0,0001$ N0182	${ }^{5} 10030$	60,0033	40.00s5	${ }^{6} \mathrm{CO} 0039$	${ }^{7} 00065$	${ }^{20.0093 ~} \mathrm{~N}^{0165}$ ह6
108	xocerabe 3	8030105	${ }^{5} 50.006 \%$	${ }^{32}$ (10)99)	${ }^{3} 0.10995$			¢ 4000	${ }^{43} 000055$				${ }^{33} 0.0005 \mathrm{~N}^{030 \mathrm{~J}} \mathrm{S3}$
109	tacobim-5	[80.49	\$0.0057				${ }^{5} 0.0004 \mathrm{~N}^{\text {018\% }} 39$	"0,0081	${ }^{+1} 0.0082$	व0,0104	"00120	F0, 0140	
14.0	nishancha	${ }^{1030.0 .01 .55}$	90.0208	15000248	${ }^{51} 0.0298$			${ }^{238} 0.02227$	${ }^{18} 0.0290$				
111	Yrue	10.0040	${ }^{8} 0,0047$	${ }^{35} 0.0053$	${ }^{31} 0.00061$		${ }^{58} 0.0002 \mathrm{~N}^{0 / 2000}$	5000056	${ }^{3} 0.00 / 4$	${ }^{31} 0.00082$	${ }^{3} 00086$	${ }^{\text {® }} 0.0103$	${ }^{89} 0.0008 \mathrm{~N}^{0156}$ of
112	Y Miv-1	*0,0038	\%0,0046	${ }^{22} 0.0051$	${ }^{4} 0.0059$	${ }^{19} 0,8069$	${ }^{560.0003 ~} \mathrm{~N}^{012 \mathrm{~N}^{35}}$	S7000 ${ }^{5}$	${ }^{2} 0.00772$				${ }^{0} 0.0015 \mathrm{~N}^{\text {0170 }} 28$
113	xico-2	${ }^{3} 000013$	t00,0015	80.0017	${ }^{7} 0.0019$	${ }^{6} 0.0023$	${ }^{20.0001 ~ M ~} \mathrm{~N}^{0185}$	ए0.0041	${ }^{10} 000044$	${ }^{13} 0.0047$	${ }^{18} 000050$	${ }^{4} 00055$	$80.0011 \mathrm{~N}^{01959} 18$
114	virua	${ }^{13} 000 \mathrm{c} 2 \mathrm{t}$	${ }^{12} 0.0023$					${ }^{510052}$	${ }^{15} 0.0054$	${ }^{19} 0.0057$	${ }^{18} 0.0061$	${ }^{15} 00058$	
113	yIT 19%	T0.0n7	8, 6 \% 1	${ }^{5} 50.18$	${ }^{6} \times(6)$	${ }^{3} 0.0012$	${ }^{42} 0.0002 \mathrm{~N}^{\text {019 }} 1 \mathrm{ll}$	${ }^{10000036}$	${ }^{5} 00037$	${ }^{9} 0.0040$	60.042	${ }^{18} 0.0072$	
116	x\|cus	${ }^{18} 0.0009$	150,0020	${ }^{10} 000021$	${ }^{9} 0.02023$	${ }^{80} 00025$	$60.0005 \mathrm{~N}^{00 \mathrm{E}} 10$	${ }^{16} 10.0047$	${ }^{19} 0.0048$	${ }^{16} 0.0050$	${ }^{10} 000052$	10,0095	${ }^{86} 0.0021 . \mathrm{N}^{\text {J036 }}$

Table 13: Investigation-mode: Effect of N on FNTR at rank 1 For five emrollment population sizes, $\mathrm{N}_{\text {, }}$ with $\mathrm{T}=0$ and FPIR $=$ 1. The left five columns apply for consolidated enrollment of a variable number of lifetime images from each subject. The right five columns apply for enrollment of one recent image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithons were not run on galleries with $N>$ 1600000. Throughout blue superscripts indicate the rank of the algorithm for that columm, and yellow highlighting indicates the most arcurate value. Caution: The Power-low models are mostly intended to draw attention to the kimd of behavior, not as a model to be used for prediction.

$2019 / 09 / 11$	FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$	False neg. identification eate	$\mathrm{N}=$ Num. enrolled subjects	$\mathrm{T}=$ Threshold		
17.24 .52	FIR $\mathrm{N}, \mathrm{T})=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined		\quad	$\mathrm{T}=0 \rightarrow$ Investigation
:---						

	ITSSESNOT ATEANK	ENECLTHETMME						ENTROL MOET RECEMT					
	हलाबim，$=0, \mathrm{r}=50 \mathrm{l}$	D8task mivt 2018						13TRSE FF FCOT 2018					
咉	ALCOETHM	$\mathrm{n}=0.6 \mathrm{R} / \mathrm{M}$	$\mathrm{N}=2.6 \mathrm{M}$	N $=3.80 \mathrm{M}$	N－E，${ }^{\text {a }}$	$\mathrm{N}=12.0 \mathrm{M}$	a $23{ }^{5}$	$\mathrm{N}=0.64 \mathrm{M}$	$\mathrm{N}=1.6 \mathrm{M}$	$\mathrm{N}=3,0 \mathrm{M}$	$\mathrm{N}=6 . \mathrm{Mm}$	$\mathrm{N}=12.0 \mathrm{~m}$	$0 \mathrm{~N}^{2}$
1	3perl－3	\％0．0103	${ }^{18}{ }^{18} 0.0151$	${ }^{8}{ }_{60192}$	\＄00241		${ }^{3} 0.0001 \mathrm{~N}^{1 \times 320}$	${ }^{136} 01959$	${ }^{18} 0.0217$				
2	31317－5	${ }^{2} 0.0030$	\％，0037				${ }^{52} 0.0000 \mathrm{~N}^{2 \times 3}$ \％	${ }^{320.0065}$	20，2004	${ }^{320.0033}$	${ }^{82} 0,0094$	${ }^{\text {w }}$ 0，010？${ }^{\text {a }}$	${ }^{3} \mathrm{C}, 000 \mathrm{~F} \mathrm{~N}^{012} \mathrm{~m}$
3	$4 \mathrm{CHERG}-8$	${ }^{150,0073}$	3\％，0076	800079	${ }^{3}$		$30.0012 \mathrm{~N}^{10293}$	${ }^{1250.0125}$	${ }^{12} 0 \times 123$				${ }^{70.0079} \mathrm{~N}^{\text {verne }}$
4	A．chers－3	${ }^{3} 0,0030$	${ }^{3} 0.0040$				${ }^{20} 0,0000 \mathrm{~N}^{0 \times 3}$	＂0，00s	${ }^{6} 0.0052$	${ }^{0} 00056$	${ }^{40,00623}$	${ }^{19,00070}$	${ }^{3} 0.0008 \mathrm{~N}^{07 \%}$ al
5	ANISE－${ }^{\text {a }}$	${ }^{3} 0,00024$	${ }^{16} 0.0036$				$800000 \mathrm{~N}^{23535}$	${ }^{3} 8.0055$	${ }^{200065}$	\％0．00\％2	0.0081	30.0092	
6	Amares ${ }^{\text {a }}$	＊0．0039	\％\％，0050	${ }^{810,0061}$	T0，003		\％ $0.0001 \mathrm{~N}^{00781}$	${ }^{180} 0.0051$	${ }^{1 \times 0.0161}$	70.0178	\％0．0139	＂0．07\％	＂0．000］ $\mathrm{N}^{0285 \%}$
7	AMAER－5	\＄0．041	380，0053				40，0001 N^{3038}	${ }^{12} 80.9088$	${ }^{160} 0.0169$	${ }^{780.0127}$	${ }^{2} 0,0,0154$	20，0015	${ }^{8,0.6017 ~} \mathrm{~N}^{\text {demem }}$
9		${ }^{310.1723}$	${ }^{183} 0.2152$	${ }^{5} 02467$	${ }^{*} 0,2850$			${ }^{25} 0.196 \%$	${ }^{102} 0.2402$				${ }^{10} 6.0107 \mathrm{~N}^{\text {vas }}$ 3
9	4．onsk－2	${ }^{580.0645}$	${ }^{1350,0373}$				30．00cen ${ }^{\text {desen }}$	${ }^{1580,0974}$	${ }^{1801298}$	\＄0．1547	${ }^{2}$［2， 21950	\％／2171	${ }^{2} 0.0026 \mathrm{~N}^{0 / 6 \%}$
10	Examb	${ }^{\text {T3 }}$（0．） 14.42	${ }^{482} \times 1.0367$	${ }^{19} 0.0527$	${ }^{3} 02789$			${ }^{133} 0,0221$	${ }^{725} 0.0541$				
1	camvia	${ }^{122} 0 \times 1088$	${ }^{12 \%} 10.0323$					${ }^{133} 6.0137$	${ }^{15} 004885$	${ }^{80,0736}$	${ }^{58} 0,3387$	${ }^{20} 0.2383$	
12	2 cosemt－a	${ }^{3} 0$ ring	${ }^{55} \times 0024$	${ }^{20,0037}$	${ }^{31} 000031$	${ }^{3} 00045$		${ }^{58} 0.0047$	\＄0．0n50	40.0054	${ }^{88} 0.0062$	${ }^{30,0122}$	${ }^{0} 00001 \mathrm{~N}^{\text {ग2e }}$
15	4 SECENM－1	\＄6．0．21	50.0024					${ }^{580.0347}$	${ }^{8} 000050$	＋0．0006	${ }^{30} 0.00628$	${ }^{620,0122}$	$9.0001 \mathrm{~N}^{1028}$ 吅
4	4 cacsen－2	${ }^{3} \mathrm{Comam}$	\％0．9023	${ }^{7600014}$	1800086	${ }^{19} \mathrm{gaOm} 7$		${ }^{3} 10.0038$	${ }^{3} 0.0041$	${ }^{50.0012}$	${ }^{38} 0.0044$	${ }^{3} 0,00147$	${ }^{50} 0.0015 \mathrm{~N}^{01665{ }^{2}}$
15	5 cacen ${ }^{\text {a }}$	31，0914	36，0916	${ }^{20,0012}$	${ }^{13} 000020$	${ }^{1700023}$	${ }^{11} 35,4 \times 98 \mathrm{~N}^{088}$	${ }^{38} 0.0540$	${ }^{4} 0.00012$	${ }^{\text {30，0，0041 }}$	50，0446	${ }^{20,0048}$	${ }^{7} 0.0017 \mathrm{~N}^{108530}$
16	6 cagniticel	\％${ }^{0} 0.01039$	${ }^{8 \%} 10.0050$				${ }^{3} 0.0000 \mathrm{~N}^{1985} \mathrm{~m}$	＂60．0076	71000052	\＄5，0107	${ }^{18} 0.0123$	${ }^{88.0148}$	
17	S06NTBCLI	＂0，0014	${ }^{86} 0,0028$	${ }^{20,0032}$	Tauver	20，004	${ }^{5} 0.0002 \mathrm{~N}^{200055}$	${ }^{31} .0056$	${ }^{3} 0.0060$	＂0，0056	${ }^{80} 0.0072$	${ }^{3} 0.0081$	
18	cachmere－2	20，0020	${ }^{120,0021}$	${ }^{3} 000023$	${ }^{2} 000025$	Provis？	${ }^{710.0004 ~} \mathrm{~N}^{\text {01533 }}$	${ }^{58} 0.0049$	${ }^{50} 0005$	＊20，0054	${ }^{2} 0.0056$	${ }^{350.0069}$	
15	commeres	${ }^{60.0023}$	${ }^{56} 0,0025$	${ }^{20} 06026$	\％ 00022	${ }^{2} 80 \mathrm{cel}$	$80.0007 \mathrm{~N}^{085} 38$	${ }^{750.0055}$	${ }^{1} 0.0056$	${ }^{9} 9.0068$	${ }^{12} 6.0060$	${ }^{10} 0.0663$	${ }^{00} 00025 \mathrm{~N}^{0068} 84$
20	DAHOA－1	\＄0．0021	${ }^{58} 8.0012$				70．0005 ${ }^{0 \times 3} 3$	${ }^{360.0046}$	${ }^{10.0049}$	「0，0061	\％0，0054	${ }^{5} 0.00058$	${ }^{70} 6.0015 \mathrm{~N}^{01 \times 2} 10$
21	DBEMALCOG4	\％0，018\％	${ }^{120.0472}$	${ }^{30,0486}$	\％0，42？		＂0，0000 N^{1372} \％	$17 \% 0.0262$	${ }^{155} 0.0365$				${ }^{17} 0.0002 \mathrm{~N}^{3325} \mathrm{~m}^{3 / 8}$
2	Dermalocis	${ }^{12} 80.8066$	74\％ 0.0092				${ }^{0,0001} \mathrm{~N}^{03523}$	${ }^{125} 0.0113$	${ }^{18} 0.01412$	${ }^{8} 0.0192$	\％0，0275	${ }^{5} 0,427$	
23	3 DERMALOG－6	${ }^{100} 0.0046$	${ }^{31} 0.00487$				${ }^{100} 0.0035 \mathrm{~N}^{10007}$	${ }^{1050} 0.088$	${ }^{30} 00091$	${ }^{30} 0.0033$	${ }^{20.0 .0685}$	${ }^{62} 0,0087$	${ }^{50} 0,0053 \mathrm{~N}^{003010}$
4	4 gysraia	T40，0050	${ }^{115}$				${ }^{3} 0.0000 \mathrm{~N}^{125}$［18	150.0072	130.0182	${ }^{2} 0.0317$			${ }^{20,0000 ~}{ }^{3019319}$
25	5 syetal－1	${ }^{3} 0.0015$	\％ 6.00014				${ }^{80} 00004 \mathrm{~N}^{285} 5$	${ }^{28} 0,0031$	${ }^{6} 0.9033$	${ }^{2} 0.0004$			$0^{0.0012 \mathrm{~N}^{000035}}$
26	6.8 Evicata	$3^{3} 0.6012$	${ }^{3} 80.0013$	${ }^{150,0014}$	${ }^{200044}$			${ }^{210.0029}$	${ }^{19} 0,0030$	${ }^{39} 0.0032$	${ }^{15} 0.0034$	${ }^{120.0035}$	$90.0012 \mathrm{~N}^{0085} 5$
27	SYFDEA－3	150．0113	${ }^{\text {W\％}} 6.0160$	${ }^{0} 0,0209$	＊ 00252		${ }^{10} 0.0001 \mathrm{~N}^{036 \%}$	${ }^{120} 0.0175$	${ }^{185} 0.02326$				
28	8 cicre－1	${ }^{3} 10,0415$	1296，प490	\％0，5539	30.0000			1\％0．0604	${ }^{170} 006588$				
\times	9 gertwis－2	20．0123	${ }^{20,0023}$				500000 ${ }^{0 \times 3}$	${ }^{20.0056}$	＂0．0061	\％ 0.0070	${ }^{8} 8.8184$	${ }^{\text {complo2 }}$	${ }^{190} 00002 \mathrm{~N}^{028} 72$
30	M1502	${ }^{510.0084}$		${ }^{3} 0.0097$	${ }^{2} \mathrm{gaLOE}$	\＄a0118	40，0088 N^{01731}	178.0187	${ }^{36} 0.00089$				${ }^{\text {30 }} 0.0035 \mathrm{~N}^{01293}$
3	HES－3	\％ 8.0023	640，0128					${ }^{4} \mathrm{~F}, 0964$	\％ 0 0051	${ }^{2} 0.0068$	T0．0．065	${ }^{\text {²0．80，}}$	
32	2 प15．5	P0，01023	${ }^{80} 00208$	${ }^{4} 0.0083$	＊0．0039	＊ 0.0148		${ }^{2} 80.045$	${ }^{4} 000051$	30.0058	${ }^{50} 0.0065$	＊6．0．07\％	
3.	9 Hick 5	${ }^{10} 0.0009$	${ }^{3} 0,0011$	${ }^{15} 0,0012$	50004			2F0．0029	50.00033	${ }^{3} 0.0035$	${ }^{50.00383}$	${ }^{17} 0,0042$	${ }^{6} 5.0096 \mathrm{~N}^{\text {P12252 }}$
34	Ф8ME－0	स0．0916	3\％，0008		\％00026	\％0031		${ }^{3} 0.0045$	W0，0n51	स（0．0055	${ }^{3}$	${ }^{180,0667}$	${ }^{6} 6.0008 \mathrm{~N}^{21293}$
35		\％ 6.0919	${ }^{51} 0,0024$	${ }^{3} 0.0002$	$x^{0.0 c 36}$	अ0，004	$30.0000 \mathrm{~N}^{103785}$	${ }^{87} 0.0049$	${ }^{7} 0.80{ }^{\text {a }}$	${ }^{5} 0.0065$	${ }^{50} 0.0176$	${ }^{20} 0.5089$	
36	DEman－2	\％ 200031	＂0．0040－	${ }^{20} 0,0048$	${ }^{\text {Wonceg }}$	W0，0］ 4	$300001 N^{30}$	${ }^{3} 00,0061$	\％0．0069				${ }^{50} 60.010 \mathrm{~N}$
7		W0，6019	${ }^{36} 0,0022$				${ }^{2} 00002 \mathrm{~N}^{015045}$	${ }^{50} 0.0049$	\％0．005s	\％0，0057	${ }^{160.06022}$	${ }^{250,0067}$	${ }^{3 / 0.0011 ~} \mathrm{~N}^{\text {coue }}$
8	Dramat	${ }^{3} 0.0015$	${ }^{360.0017}$	$9 \mathrm{monz2}$	${ }^{4} \mathbf{0} 0023$	${ }^{2}$	＂0，0001 N002 se	${ }^{48} 0,0043$	\％0．0046	＊0．0051	${ }^{37} 0.0058$	${ }^{3} 0,0062$	${ }^{3} 0.0008 \mathrm{~N}^{\text {V12 }}$
8	Dixana－5	＊0．0013	${ }^{6} 8.0023$	${ }^{8} 0.0026$	＊ancza	${ }^{3} \mathrm{CoOH2}$		${ }^{2} 0048$	00.0056	\＄0．0662	50.0077	${ }^{16} 0.5080$	${ }^{40,0005 \mathrm{~N}^{012072}}$
40	（ meanis－6	${ }^{50} 0002$	${ }^{35} 0.0028$	40.0034	＊ 200043	＊ 00065		${ }^{26} \mathrm{~B}, \mathrm{ME} 54$	$\cdots \mathrm{Pankz}$	W0．0．72	${ }^{50} 00084$	870.0102	
41	मxacus－2	W0，0348	${ }^{130} 03510$	${ }^{36} 0.0641$	${ }^{3100904}$		\％ $0.0002 \mathrm{~N}^{1 / 595}$	1580． 0468	1m0．0657				$320.003 \mathrm{~N}^{\text {JPM}}$
4	ETCODE－1	${ }^{10,0,026}$	${ }^{240,01438}$	${ }^{8} 0.8167$	50，0323		${ }^{2} 0.0000 \mathrm{~N}^{127 \%}$	70．005s	${ }^{7} 000063$				
4	3 DNCPDE－3	${ }^{4} 6,0047$	『 40,0021					5×0.044	${ }^{1000052}$	${ }^{60.0057}$	${ }^{520.0067}$	10，0078	${ }^{3} 0.00003 \mathrm{~N} \mathrm{~N}^{0199} 85$
44	DNHONATPICS $\frac{1}{5}$	${ }^{30} 0,0020$	${ }^{3 \%} \%$ ， 0022				$0.00004 \mathrm{~N}^{01885}$	${ }^{7} 8.0052$		${ }^{50,0061}$	${ }^{46} 0.0051$	20.0061	
45		T0． 1 （1）48	${ }^{580,0050}$	\％00053	\％00066	${ }^{3} 0.0060$		${ }^{76500086}$	${ }^{15} 000089$				${ }^{189} 0.0048 \mathrm{~N}^{\text {de4 }}$
46	6 is istesex－1	${ }^{1920,0448}$	${ }^{560} 6.0050$	＊0，0053	${ }^{20} 0056$	\％ 20066	＂0．0017 N^{0383}	${ }^{135} 0.0088$	${ }^{100} 0,0189$				
17		\％10．006	${ }^{32}$	${ }^{3} 0,0029$			\＄0，000．2 N^{0861} JT	${ }^{780.0054}$	\％0，0056	${ }^{580.0058}$	${ }^{43} 0.0060$	${ }^{T 20.0063}$	${ }^{30} 0,0002 / \mathrm{N}^{0015} 30$
48	8 crstams－3	${ }^{6} 000025$	${ }^{30} 0,0026$	${ }^{30} 0.0027$	${ }^{2} 00022$	${ }^{2} 00030$	$90.0012 \mathrm{~N}^{00033}$	${ }^{780} 0.0052$	${ }^{68} 0.0054$	${ }^{6} 0,0065$	${ }^{39} 6.0055$	${ }^{33} 0.0059$	
4	coormana	${ }^{1880,0755}$	$7^{750.0077}$					${ }^{119}$	1200000	${ }^{180.10101}$	50，0102	880.0104.	
50	9 NECylio	\％0002	${ }^{10} 0.0015$	${ }^{50.0025}$	${ }^{3} 000{ }^{2}$	30．0041	$0.00000 \mathrm{~N}^{10+2 / 50}$	ए8．00026	10.3031	\％oncos	80.01839	\％0．0148	
51	L NECNII							${ }^{1250,0091}$	${ }^{1640.0034}$	，0，0097	30，0101	${ }^{99} 0.0105$	
52	4 Microgoces－3	10．2147	${ }^{196} 8.2625$	30.3017				150.2518	${ }^{1 \times 6} 0311 / 3$				
53	3 Mierofocus－5	130.140	${ }^{30} 0.1422$				\％0，0021 $\mathrm{N}^{\text {®W }}$	${ }^{100} 0.1322$	${ }^{40} 0.1844$	${ }^{8 / 0,2056}$	${ }^{83} 0.2445$	${ }^{20} 0,2929$	${ }^{100} 0.0042 \mathrm{~N}^{030} 96$
	MTEROSOFT－0	${ }^{8} 0.1008$	${ }^{180.0 n 0}$	ए00011	${ }^{1700012}$	＂0．0014			To．0031	${ }^{720} 0.0032$	${ }^{170.0035}$	${ }^{170.00837}$	
55	mierosori－1	\＄0．000	${ }^{16} 0.00098$	${ }^{0} 0.0011$	W0．0022	W0．0014		${ }^{20} 0.0028$	${ }^{19} 000030$				${ }^{30} 0.0007 \mathrm{~N}^{06 \times 64}$
66	Mictosopr－2	${ }^{10,0008}$	150，0010	${ }^{9} 0.9011$	${ }^{120,004.2}$	${ }^{40} 00014$		${ }^{20,0,029}$	${ }^{2} 0.00332$				${ }^{9} 0.0007 \mathrm{~N}^{\text {V10 }}$ \％
5	－Mritisomb－3	Ficong	\＄0．0004					${ }^{0.0008}$	${ }^{4} .0019$	${ }^{100611}$	${ }^{6} .00022$	${ }^{3} 50.0023$	${ }^{520,0006 N^{401838}}$
58	9 micrasorf－	20000	${ }^{1} 0.0004$	${ }^{3} 800005$	${ }^{1} 00005$	${ }^{1} 00006$	－0，0001 N^{2000}	80.0018	30，0019	Sa，0cel	＊creat	80.042	${ }^{40,0007 \mathrm{~N}^{\text {Urat }} 3}$
＊9	9 merwsamts	${ }^{\text {stinina }}$	30，8004	${ }^{3} 00005$	\％ 0 as	30408		90， 018	100018	${ }^{1} \mathrm{nout}$ \％	0，0020	${ }^{5} 0.0621$	${ }^{4} 0.0007 \mathrm{~N}^{\text {Jw }}$－
68	3 micestoil－6	${ }^{4} \mathbf{C o s o t a c}$	989048	mpone	${ }^{3} 00006$	3 OOMOE		10.0088	z8，${ }^{2} 95$	contic	${ }^{3} 0.0021$	8.0023	$40.0005 \mathrm{~N}^{\text {Her a }}$ a
				480038	W0604	300059		70．0055	30，3064		40．0085	${ }^{3} 0.0000$	$36.0003 \mathrm{~N}^{40043}$
32	$2 \text { जNBC-1 }$	N00076	－14／6．0980					${ }^{121} 0.0135$	${ }^{13} 001438$	${ }^{7} 0.0 .0142$	${ }^{20.0147}$	0.0154	
8	2 NFCS 2	${ }^{40.0008}$	80.0008	${ }^{6} 0.0009$	${ }^{5} 00009$	${ }^{5} 000098$		50.0022	50，023	${ }^{50,0023}$	50.0124	50.0025	
bd	1 NEP3	${ }^{2} 0 \times 11$	${ }^{2} 8.0031$	${ }^{12} 00011$	${ }^{5} 00011$	W001！	$820008 \mathrm{~N}^{1038}$	${ }^{13} 0.0026$	${ }^{2} 00,0027$	${ }^{3} 0,0028$	${ }^{0} 0.0028$	${ }^{6} 0.0089$	
c	8 мemotrenmologk－	${ }^{50} 6038$	50．0051				${ }^{3} 0.0000 \mathrm{~N}^{\text {deme }}$	${ }^{7 \times 00068}$	＂0．00\％ 3	${ }^{5} 0.0007$	W0，0115	\％0，0137	$30.00013 \mathrm{~N}^{123073}$
$6{ }_{6} 6$	6 Neunatichnolacies	30.022	${ }^{31} 0.0024$	${ }^{2} 0,0027$	${ }^{5}$	${ }^{2} 0.0035$		50.0048	W0．0051	＊im03	${ }^{50} 0.0 .057$	${ }^{5} \mathbf{0 . 0 0 6 6}$	\％0．006 $\mathrm{N}^{\mathrm{mom}}$ \％
枚	NEUROTECHMOLOCK 5	${ }^{3} 0.0012$	${ }^{25} 0.0018$	${ }^{3} 0.0019$	${ }^{3} 0.8081$	${ }^{\text {W0，0．0．23 }}$		${ }^{3}$	${ }^{*} 9.00047$	${ }^{30,0048}$	${ }^{3} \mathrm{C}, 00550$	${ }^{3} 0,0053$	${ }^{3} 0.0021 \mathrm{~N}^{006}$
6	NEMEMND： 2							${ }^{1+50.0235}$	${ }^{1+4,0288}$	${ }^{4} 0,0332$	＂0， 1391		
σ^{6}	3 NORLS－2	7×0.0366	${ }^{1810.0520}$					${ }^{1880,040163}$	${ }^{15600560}$	${ }^{36} 0.0832$	＂0，（ᄌ픠y		
70		10.0013	${ }^{3}$ ¢00016	30.0021	${ }^{2} 00026$	80.0032	${ }^{32} 0,00000 \mathrm{~N}^{\mathrm{J} 38 / 5}$	120．0033	${ }^{31} 000039$	${ }^{3} 0.0043$	${ }^{30,00051}$	${ }^{3} 0.0058$	${ }^{220.0002 ~} \mathrm{~N}^{\text {Ter }}$
π		${ }^{3} \mathrm{Comin}$	${ }^{36} 80.0088$	${ }^{9} 0.010122$	${ }^{2} 00129$	${ }^{2} 00038$	$90.000 \mathrm{~N}^{\text {vess }}$ ？	${ }^{31} 10034$	${ }^{3} 93040$				${ }^{31} 0.0003 \mathrm{~N}^{102 m}$
72	2 NTECMLAB－3	${ }^{2} 0.0010$	${ }^{20.0012}$				$20.0001 \mathrm{~N}^{\text {uTP }}$	${ }^{78} 6.0028$	${ }^{3} 000332$	ए0．0065	${ }^{20} 0.8039$	${ }^{2} 0.00 .848$	

Table 14：Investigation－mode：Effect of N on FNIR at rank 50 For five enrollment population sizes，N ，with $T=0$ and FPIR＝ 1．The left five columns apply for consolidated enrollment of a variable mumber of lifetime images from each subject．The right five columns apply for enrolment of one recent image．Missing entries tusually apply because another algorithm from the same developer was run instead．Some developers are missing because less accurate algorithms were not run on galleries with $N>$ 1600000．Throughout blue superscripts indicate the rank of the algorithm for that column，and yellow highlighting indicates the most accurate value．Caution：The Power－low models are mostly intended to draw attention to the kind of behavior，not as a model to be used for prediction．

2019／09／11	FNIR（N，R，T）$=$	False neg．identification tate	$\mathrm{N}=$ Num，enrolled subiects	T＝Threshold	$T>0 \rightarrow$ Ientifation
17：24：52	$\operatorname{FPIR}(\mathbb{N}, \mathrm{T})=$	False pos．identification tate	$\mathrm{R}=$ Num．candidates examined		$T>0 \rightarrow$ Identification

MISSES NOT AT CAMTS 50		BNROLLIFETOAE						EINROL MGST RECENT					
	$\mathrm{D}(\mathrm{N}, \mathrm{T}=0 . \overline{\mathrm{B}}=5 \mathrm{il})$			Let	T: Fret 20					DATA	- PEVT 20		
\#	ALSOMCtMM	H=0, 5 ± 13	$\mathrm{N}=1.6 \mathrm{M}$	$\mathrm{N}=3.0 \mathrm{M}$	$\mathrm{N}=62 \mathrm{~L}$	$\mathrm{N}=12.8 \mathrm{CK}$	aN ${ }^{5}$	$\mathrm{N}=0.64 \mathrm{M}$	$\mathrm{N}=2.6 \mathrm{M}$	$\mathrm{N}=3.0 \mathrm{M}$	$\mathrm{N}=\mathrm{ax} \mathrm{OL} / \mathrm{l}$	$\mathrm{N}=12.0 \mathrm{CM}$	αN^{5}
73	NTECHLAR-4	${ }^{2000099}$	3600010	${ }^{150.0012}$	${ }^{18} 0.0014$	${ }^{156,0016}$	${ }^{36} 9.0001 \mathrm{~N}^{\text {W20 }}$ [85	${ }^{31} 800027$	${ }^{35} 000000$	${ }^{100,0032}$	${ }^{15} 10,0035$	ए60039	${ }^{3} 0.9006 \mathrm{~N}^{\text {J®N }}$
74	NTECMLAB-6	${ }^{3} 00000$	70.0008				139,0000 N028 ${ }^{\text {co }}$	${ }^{6} 000021$	${ }^{100025}$	${ }^{3} 0.00278$	${ }^{3} \mathrm{D} 00931$	${ }^{1} 0.00135$	
75	NTECHLAB-6	${ }^{5} 000006$	${ }^{5} 0.0008$	50.0068	\% 0.0010	${ }^{9} 0.0012$		${ }^{5} 0.0021$	${ }^{6} 0.0023$	80.0026	${ }^{8} 0.0088$	${ }^{2} 000132$	\%0.0003 N^{10147} b2
76	guanthsorn-1	${ }^{120} 09843$.	${ }^{15} 099843$				-	1801140	${ }^{12} 20.1140$	${ }^{40} 8.1140$		702140	129.1140 Nएय?
\%	Renkione-0	${ }^{156} 000034$	${ }^{100} 0.0100$	${ }^{3} 0.0120$	${ }^{33} 0.0146$	${ }^{3} 0,0176$	W6,0001 N038 ${ }^{\text {N }}$	${ }^{130} 0012 \mathrm{O}$	${ }^{12} 00.0159$	70.018	\%0026	${ }^{3} 0.0252$	
79		10,00042	30.0055	${ }^{5} 0.00 \in \pi$	${ }^{980,0082}$	${ }^{3} 0.0100$		${ }^{10} 000978$	${ }^{4} 00.0058$				
*	Raineones 2	\$0,00s7	${ }^{35} 000047$				${ }^{53} 0.0001 \mathrm{~N}^{\text {N20 }} 72$	${ }^{36} 0.0075$	${ }^{10} 0,0087$	20,00098	80.0111	${ }^{800128}$	
80	RANIKOMP ${ }^{\text {a }}$	80.0037	${ }^{80} 0.0047$	+6,0055	400067	30,008?	${ }^{38} 0.0001 \mathrm{~N}^{182 \mathrm{~d}} 25$	P00005	${ }^{650.00 s 7}$	$8_{0,0098}$	\$300111	${ }^{260.0128}$	
81	3sturons-4	70.006	${ }^{10} 0.0070$					12 k 0.009	${ }^{180} 00.0128$	${ }^{70} 0.0153$			
82	Raburone 5	80.0021	550.0025	\%0,002	${ }^{3} 60.0034$	${ }^{9} 0,0040$		${ }^{10,0053}$	${ }^{2} 0.0058$	350.00153	${ }^{33} 0.0069$	${ }^{8} 0.0087$	
8		71000058	${ }^{16} 90.0083$	54.0208				${ }^{10} 0.0077$	T00.00s 4				120.0002 N ${ }^{\text {J/2\% }} 8$
84	REALANETVOMKS-2	*0,0042	\%0.0061					${ }^{14} 0.0075$	${ }^{108}$ (1000\%	20.0119	7000149	${ }^{3} 0.0155$	
88	Remerikul-2	\% 0.0013	${ }^{33} 0.6016$				3\%.0001 N138त2	W60038	${ }^{3} 900042$	${ }^{33} 6.0004{ }^{3}$	San050		$0.0007 \mathrm{~N}^{0125: 3}$
86	SEASETHES-0	${ }^{2} 00012$	${ }^{2} 60,0013$				\square	${ }^{12} 0,0041$	${ }^{5} 0,0041$	$*_{0,0042}$	${ }^{2} 0,0943$	P00044	\$ $0.0028 \mathrm{~N}^{0285}$
88	SENS EFIME-1	* 0,0011	${ }^{280,0012}$				-	* 0.0040	${ }^{5} 100041$	${ }^{\text {F }} 8,0041$	${ }^{6} 0.0042$	\%0.0048	${ }^{0} 0.0018 \mathrm{~N}^{-055} \cdot 25$
89	SHAMAND 3	${ }^{158} 0.0334$	${ }^{1250,0404}$	${ }^{82} 00025$			${ }^{35} 0.0022 \mathrm{~N}^{01789}$	${ }^{192} 0.0468$	${ }^{163} 01544$				${ }^{1050.0053 ~} \mathrm{~N}^{015887}$
89	SABMA N ${ }^{2}$	${ }^{2} \times 0.0243$	${ }^{150.0 .243}$				${ }^{167} 60.0183 \mathrm{~N}^{067}{ }^{8}$	${ }^{180} 003334$	190.0335	32.0344	${ }^{7} 00052$	${ }^{3}+\operatorname{cossf} 2$	${ }^{19} 000430 \mathrm{~N}^{0227}$
90	SLET-	${ }^{183} 0.21635$	${ }^{10} 51.2635$	${ }^{85} 02238$			${ }^{115} 02626 \mathrm{~N}^{00013}$	${ }^{22} 0,0029$	${ }^{3} 0.1030$ t	${ }^{13} 0,0031$	${ }^{110,0092}$	${ }^{3} 000033$	
91	SLas -2	${ }^{18} 0.2124$	${ }^{182} 0.2124$				${ }^{198} 02.116 \mathrm{~N}^{00003}$	${ }^{50000151}$	${ }^{2} 0.0032$	${ }^{17} 9.0032$	${ }^{13} 0.0033$	${ }^{10} 000084$	${ }^{15} 0.0029 \mathrm{~N}^{0032712}$
92	SMALLaRT-4	${ }^{18} 80.8160$	${ }^{148} 0.5522$				${ }^{108} 0.0859 \mathrm{~N}^{0108}$	${ }^{20} 0975$	${ }^{1980} 08438$	$\$_{0} 09906$			${ }^{16} 0.4632 \mathrm{~N} \mathrm{~N}^{0105119}$
93	SYSTESSE 3	${ }^{10600.0582}$	${ }^{152}$				${ }^{100} 6.0174 N^{\text {0use }}$	${ }^{1290.0881}$	${ }^{158} 0.6891$	850,0912	${ }^{50} 0.120$	\%0.112\%	${ }^{172} 0.0231 \mathrm{~N}^{\text {v0989 92 }}$
34		"0.0069	${ }^{48} 0.0022$	${ }^{2} 00025$			$58 / 0.0002$ N07\% ${ }^{\text {P }}$	72000	${ }^{489.0046}$				${ }^{9} 0.0006 \mathrm{~J}{ }^{2142 \% 35}$
95	TEvLind 5	\%0,0014	30,0017				${ }^{2} 0.5002 \mathrm{~N}^{\text {W10. }}$	\%0,0001	ए0,0037	20.0041	ए00044	${ }^{8} 0.0050$	${ }^{4} 0,000 \% \mathrm{~N}^{\text {H25 35 }}$
98	Troer-18	100,0061	7100.0097	5800025	${ }^{87} 0.0154$			170.0098	${ }^{120} 0.0439$				(00001 N ${ }^{03 / 7 / 2}$
88	rucen 2	${ }^{28} 0.00018$	${ }^{2} 0,0012$					${ }^{37} 9.0028$	${ }^{38} 0.0039$	${ }^{\text {P }} 0.003 \%$	"0,0088	${ }^{220.0045}$	${ }^{29} 0.0008 \mathrm{~N}^{1135} 36$
98	Teidgaterosms-1	${ }^{150,0057}$	50, 0 西	${ }^{24} 0.0062$	${ }^{550,06067}$		\%.0020 M ${ }^{\text {(1720 \%2 }}$	${ }^{6300059}$	${ }^{5} 0.0052$				${ }^{18} 0.0022 \mathrm{~N}^{1061 ~ \% ~}$
98	coscise 0	${ }^{2} 000012$	${ }^{23} 0.0112$				${ }^{65} 0,0002 \mathrm{~F}^{4 / 2} 3$	* 0,0037	${ }^{33} 0.0039$	${ }^{36} 0.0047$	${ }^{3} 00043$	${ }^{40 \times 127}$	${ }^{5} 00000 \mathrm{M}$ [3क य20
	20-a	7301006	${ }^{185} 0.1421$	001752	${ }^{320.2147}$			180.1248	180.1699				$700014 \mathrm{~N}^{10} 5$
111	QD: 1	${ }^{1 \times 0} 0,0098$	${ }^{140.0105}$					${ }^{1 \times 1} 0.0145$	${ }^{1 \times 9} 0.0155$	20.0160	${ }^{30.0179}$	\%0.0136	${ }^{10} 0.0036$ N ${ }^{0} 0$
102	ngilatasa chituryb-3	${ }^{10} 000032$	${ }^{110.0110}$	${ }^{50} 0.0143$	${ }^{520.0143}$		${ }^{660.0001 ~} \mathrm{~N}^{0.32235}$	${ }^{123} 0.0118$	${ }^{131} 0.00 .660$				${ }^{8} 00001 \mathrm{~N}^{23 / 3 m}$
102	\%3STONLMES-3	${ }^{30} 0.0080$	820.0042	${ }^{-80.0006}$	${ }^{2} 0.0119$		${ }^{5} 0.0000 \mathrm{M}^{0612.105}$	${ }^{81} 00057$	920,0089	900.0105	${ }^{23} 0.0166$		${ }^{4} 00000 \mathrm{~N} \mathrm{~N}^{2 \times 1015}$
104	vistotalass-4	$\square 0.0040$	12000011				${ }^{68} 0.0002 \mathrm{~N}^{01603}$	110.00025	${ }^{31} 0.00227$	${ }^{12} 0.00330$	${ }^{5} 0.00398$	${ }^{50} 00059$	${ }^{6} 00000 \mathrm{~N}^{\text {120 }} 10 \mathrm{c}$
105	KIStonlates-5	${ }^{17} 0.0009$	${ }^{190.0010}$	${ }^{35} 0.0012$	${ }^{16} 0,0016$	${ }^{13} 0.0026$	${ }^{8} 0,0000 \mathrm{~N}^{\text {J8d }} 9$	2000025	${ }^{10} 0.0026$	${ }^{11} 0,0029$	${ }^{18} 800033$	${ }^{12} 00044$	${ }^{13} 0.0002 \mathrm{~N}^{019200}$
106		90.0010	${ }^{150.0010}$				${ }^{77} 0.0005 \mathrm{~N}^{\text {cibe }} 15$	${ }^{3} 0.0003$	${ }^{3} 0.0025$	${ }^{9} 0,0027$	${ }^{10} 000831$	500040	${ }^{160.00002 N^{01737}} 8$
107		150.0008	${ }^{13} 000010$	symion	${ }^{8} 0.0017$	\%0011	70, 0004 Nए0W 19	${ }^{8} 10023$	20.0024	${ }^{5} 0,0025$	${ }^{5} 00025$	80.0932	
108	W0,0em-3	${ }^{69} 0.01623$	50,0025	${ }^{38} 0.0028$	${ }^{2} 0.0001$		${ }^{7500.0004 ~} \mathrm{~N}^{\text {dz3 }} 3$	\%0,0040	${ }^{11} 000042$				${ }^{780.0017 ~} 0^{008829}$
109	- cremici 5	"a00027	${ }^{69} 0.0002^{9}$				प20,0013 58005 14	${ }^{7} 0.0051$	9600054	${ }^{5} 0.0056$	ए0006a	${ }^{\text {P/ }} 0.0064$	${ }^{13} 0.0019 \mathrm{l}^{005} 5$
110	Yishenad	अ0.0035	80.0047	${ }^{41} 0.0058$	${ }^{3} 0.005 / 2$		$190.0000 \mathrm{~N}^{0.3588}$	\%0,006	${ }^{56} 0.0082$				${ }^{12} 0.0005 \mathrm{~N}^{01919}$
111.	YTRU-0	${ }^{2} 0.06626$	${ }^{63} 0.0027$	${ }^{3} 0.0029$	${ }^{32} 0.0061$	${ }^{50,00034}$	${ }^{51} 0.0008 \mathrm{~N}^{00595}$	${ }^{63} 0.0048$	${ }^{52} 0.0049$	${ }^{*}{ }_{0}, 0052$	\$0,0054	${ }^{50.0057}$	${ }^{81} 0000211^{0800} 36$
112	Yuth	${ }^{2} 0.0026$	${ }^{3} 00,0027$	${ }^{10.0028}$	${ }^{29} 0.0031$	${ }^{25} 0.0036$	${ }^{38} 0,00088 \mathrm{~N}^{0095}$	${ }^{52} 0,0048$	${ }^{51} 0.0049$				${ }^{50} 0,0033 \mathrm{M}^{0029 ?}$
113	xTIL-2	${ }^{12} 000008$	${ }^{3} 000009$	${ }^{5} 000008$	${ }^{6} 0.0010$	${ }^{3} 0.0910$		${ }^{32} 0.0004$	${ }^{80.0035}$	${ }^{2} 0.0046$	${ }^{18} 00045$	"00037	$390,0024 \mathrm{~N}^{1028}$
114	7rua 3	50.0018	*0.0018					प50,0045	${ }^{25} 0.0047$	\$0,0047	${ }^{3} 00008$	\%00049	${ }^{26} 00031 \mathrm{M}{ }^{\text {a }}$
115	yroses	${ }^{2} 0.00088$	${ }^{5} 0.000 .8$	100008	${ }^{4} 0.0008$	${ }^{6} 0.00012$	${ }^{30} 00006 \mathrm{~N}^{\text {ares }}$	* 0,0082	${ }^{20} 0.0033$	${ }^{18} 0.00333$	${ }^{12} 0000338$	*0.00660	
116	xTuS	${ }^{4} 00017$	30,0017	${ }^{1800003}$	${ }^{180,8017}$	${ }^{15} 0.0018$	${ }^{2} 00014 \mathrm{~N}^{00355}$	${ }^{47} 0.0041$	${ }^{42} 00.0044$	7100034	${ }^{3} 000146$	${ }^{10.0045}$	${ }^{102000389} \mathrm{~N}^{\text {Pu18 }}$

Table 15. Investigation-mode: Effect of N on FNIR at rank 50 For five enrollment population sizes, N, with $T=0$ and FPIR $=$ 1. The left five columns apply for consolidated enrollment of a variable number of lifetime images from each subject. The right five columns apply for enrollment of one recent image. Missing entries usually apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were not run on galleries with $N>$ 1600000. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind ot behavior, not as a model to be used for prediction.

WIFSES OUTSDE KANK R 		RESOURCEDSASE 		ENIROL LIFGYISECORSOLIDETED $=1.6 \mathrm{CM}$				ENSOLTMOST GECGNT，$N=1$ GM					
		ERYT 2018 andgsinats											
\％	ALSTOLTHM			BYTES	MSEC	K＝1	$x=10$	$R=50$	WORS－10	R－1	$\underline{1}=10$	$\mathrm{r}=50$	500x－10
1	3DINT－	${ }^{181} 9096$	\＄0 426				${ }^{399} 10.000$	${ }^{713} 0.0344$	178.00344	18त0z．4	${ }^{115} 1.190$		
2	3 OHT －1	${ }^{19} 1224$	${ }^{54} 488$				${ }^{58} 10,000$	${ }^{180} 0.0375$	1790．0375	${ }^{19} 0.0875$	${ }^{131.233}$		
3	3 DIY1－2	${ }^{9} 5228$	${ }^{97488}$				1710．00）	उस0，0404	129，0ac4	${ }^{180.0404}$	121.259		
$\stackrel{4}{4}$	3 DIV1－3	42512	${ }^{21625}$	${ }^{1230} 0,0545$	${ }^{180} 0.0645$	${ }^{12}$	141.345	${ }^{52} 0.085 \%$	${ }^{15200065 \%}$	1\％0，0857	${ }^{18181489}$		
8	3DIR1－5	174096	${ }^{131} 628$	580.0133	750．0133	800133	${ }^{81} 1.069$	${ }^{50.0201}$	${ }^{58} 0.02012$	${ }^{500001}$	91.115		
6	3 DIWT－5	${ }^{T 8 \%} 4096$	${ }^{192} 653$	\％0．013	${ }^{36} 60133$	200133	${ }^{17} 1.069$	${ }^{40} 0.0202$	580.0202	${ }^{50} 00.0202$	W1116		
7	SDIVT－6	45828	${ }^{13} 1653$	${ }^{49} 80.0186$	W90．0186	${ }^{39} 0.0186$	${ }^{11} 10,127$	310．0255	${ }^{110} 0.0265$	ग00，0265	${ }^{1741.186}$		
8	ALCHERA－5	${ }^{121} 20 \leq 8$	${ }^{4} 263$	${ }^{12000121}$	${ }^{50} 000121$	${ }^{80} 000121$	${ }^{57} 2085$	${ }^{320.0186}$	${ }^{38} 0.0186$	${ }^{52000186}$	${ }^{191} 1.138$		
2	ALCMERA－1	122048	${ }^{8} 65$	${ }^{125090824}$	${ }^{2} 88.9824$	${ }^{148} 09824$	${ }^{148} 89848$	${ }^{19} 0,9889$	1090.9869	${ }^{29} 0.980$	［89，812		
10，	sactera－2	${ }^{212042}$	${ }^{18} 118$	${ }^{31} 0,9914$	${ }^{124} 0,0944$	${ }^{12400914}$	${ }^{125} 1.552$	${ }^{1580.0973}$	${ }^{158} 0,0073$	${ }^{1860,0073}$	${ }^{152} 18,867$		
21	shememer	${ }^{19} 92048$	［17） 548	${ }^{41} 0.0152$	${ }^{31} 00159$	${ }^{90,0155}$	${ }^{38} 1.686$	${ }^{760.0127}$	${ }^{32} 80,0127$	${ }^{1200125}$	${ }^{6} 1.064$		
12	ANKE－4	${ }^{215} 2072$	\％${ }_{4}$	${ }^{720.0100}$	${ }^{72000100}$	${ }^{2} 000100$	${ }^{68}$	${ }^{30} 0.0188$	${ }^{86} 0.0158$	$8^{3} 0.0158$	${ }^{3} 1.05$		
13	6，	${ }^{\text {T10 }} 2072$	${ }^{57} 433$	${ }^{78} 0.0101$	${ }^{25} 0.0105$	750．010	\％ 1.055	00.0158	${ }^{27} 0.0158$	${ }^{2} 00158$	${ }^{181.096}$		
12	SWMARS－${ }^{\text {a }}$	${ }^{100} 1564$	${ }^{760} 653$				${ }^{352} 10000$	25 0.0659	${ }^{175} 0,0639$	${ }^{115} 00.0639$	${ }^{17 \%} 1.439$		
35	大useab－1	${ }^{36} 1564$	${ }^{18} 651$				${ }^{78100000}$	3.90 .0587	${ }^{141} 0.0587$	${ }^{141} 0,058 \chi^{\prime}$	${ }^{1483} 1.382$		
16	A498528－2	${ }^{196} 2176$	${ }^{19} 912$				${ }^{351} 10.000$	${ }^{192} 000600$	${ }^{192} 0.0600$	${ }^{15} 00.0600$	${ }^{125} 1.416$		
37	Sixas 5 － 3	${ }^{166} 2076$	${ }^{53} 778$	${ }^{210} 0.10208$	3010.0209	${ }^{110} 0.0209$	${ }^{3 / 1.110}$	\＄150．01382	${ }^{48}$	${ }^{176} 000352$	${ }^{16} 1.186$		
33		\％ 3	${ }^{-167} 712$	${ }^{119} 0.0522$	1190.0529	${ }^{118} 0.0582$	${ }^{151} 1.275$	190．070 ${ }^{4}$	${ }^{15} 007701$	${ }^{15} 0.0704$	${ }^{141} 1,378$		
19	SWARE－5	18.300	${ }^{8} 818$	${ }^{20} 00.0808$	3010．0208	${ }^{\text {（15）} 0,0208 ~}$	प्रह1．110	${ }^{210} 0.01838$	＂11．0337	10.0 .0395	${ }^{[151.19]}$		
20	AMSARE 6	${ }^{3} 124$	${ }^{178} 818$	${ }^{150} 0.0588$	${ }^{120} 0.0538$	${ }^{12000528}$	1181.286	${ }^{393} 0,0622$	${ }^{18} 0.0722$	$11500 \times / 22$	${ }^{131} 1.394$		
2.		${ }^{1} 1036$	10	13／4．4649	${ }^{131} 0.4649$	${ }^{\text {M }}$（0．6．49	${ }^{131} 4.268$	${ }^{191} 0.4519$	${ }^{181} 0.45{ }^{10} 9$	${ }^{191} 104519$	${ }^{198} 4.354$		
22	AY000\％2－	${ }^{81} 1036$	${ }^{3} 12$	${ }^{191} 0,3364$	${ }^{150} 0.3304$	${ }^{110} 0,2964$	${ }^{137} 3.0773$	${ }^{187} 0.34332$	1576.3432	${ }^{18} 003432$	${ }^{138} 93,244$		
23	sxoncx－2	${ }^{7} 1036$	41	${ }^{137} 02606$	${ }^{137} 0.26016$	${ }^{13} 026606$	${ }^{183} 2.620$	${ }^{126} 0.5432$	${ }^{196} 0,34322$	${ }^{188} 00 \times 432$	18 3 3.244		
22	CAIMY：1	${ }^{6} 1024$	${ }^{1} 178$				${ }^{185} 10.000$	${ }^{178} 0.22672$	${ }^{179} 9.2268$	190.2267	${ }_{16}^{16.419}$		
25	Eshul－2	${ }^{7} 1024$	17．784				${ }^{329} 10000$	${ }^{300} 0.1292$	${ }^{100} 0.12 \% 2$	${ }^{1060.1292}$	${ }^{181} 1, 刃 1$		
25	Eamyl－s	${ }^{78} 1024$	${ }^{156} 907$	120，0368	${ }^{11} \times 0,0368$	17200068	${ }^{1181.330}$	100．0544	\square^{160564}	${ }^{10} 0.0544$	${ }^{150} 1.488$		
27	examy -4	${ }^{+51024}$	${ }^{18} 718$	${ }^{210} 0.0326$	${ }^{16} 00326$	${ }^{180} 00,0326$	${ }^{181,291}$	2350.0490	${ }^{137} 0.0490$	${ }^{1 \times 2} 0.0490$	${ }^{1614.48}$		
28	crimicas	${ }^{6} 1024$	${ }^{123} 769$	${ }^{7160.0458}$	${ }^{115} 0.0458$	${ }^{16000559}$	${ }^{1281.410}$	${ }^{12} 0.06673$	${ }^{155} 00.073$	${ }^{150} 00673$	${ }^{159} 1.602$		
22	cosent－0	${ }^{14} 525$	${ }^{318551}$	$\overline{70.0105}$	${ }^{77} 0.0106$	\％0010t	${ }^{761,062}$	${ }^{3} 0.0131$	${ }^{70} 0,0131$	N0．0131	${ }^{\text {\％}} 1.111$		
20	ERGENT－1	${ }^{4} 52.5$	${ }^{178} 552$	${ }^{50} 00106$	${ }^{750.0106}$	730010	$\mathrm{F}_{1,02}$	${ }^{730.0131}$	${ }^{73} 0.0131$	${ }^{78} 000131$	${ }^{31111}$		
31	cockill ${ }^{\text {a }}$	${ }^{2} 1043$	${ }^{31} 8887$	${ }^{30} 0.0027$	20.10027	\＄00027	${ }^{19} 1.017$	\＄0．0062	${ }^{2} 0.0062$	5 P 0.0062	${ }^{31} 1045$		
32	Cosent 3	11043	70960	${ }^{2} \mathrm{P}$	${ }^{9} 0,0037$	${ }^{2} 000037$	721． 024	00.0064	100，0064	80,0064	${ }^{531.047}$		
33	Cccamem－fil	192052	${ }^{8176}$	${ }^{1} 00189$	${ }^{58} 0.0139$	${ }^{350018}$	${ }^{951.108}$	${ }^{172} 8.1278$	1180.0278	1730，0278	1181.150		
34	cosingtee－1	${ }^{150} 2052$	${ }^{2} 202$	560．0992	${ }^{68} 0.0069$		उक 1048	\％0， 1143	390．0143	${ }^{3} 90013$	${ }^{3} 1.085$		
35	CKGNITEC－2	${ }^{15} 2052$	\％227		${ }^{34} 0,0044$	${ }^{3} 000044$	${ }^{51.047}$	${ }^{42} 0.0083$	${ }^{42} 0,0083$	${ }^{+20,0083}$	${ }^{51.659}$		
36.	DCAEVTEC ${ }^{\text {a }}$	${ }^{2} \times 282052$	5297	${ }^{31} 0.6048$	\％70．9018	${ }^{3} 0000018$	${ }^{31} 1.051$	${ }^{\text {\％} 0 \text {－nck8 }}$	${ }^{3150.0088}$	${ }^{15000088}$	${ }^{52} 1.062$		
37	205510A 00	${ }^{1+4} 2045$	\％378	500097）	\％0．0070	W0，007	51． 1.47	\＄50．0115	${ }^{59} 0.0175$	mo．015	${ }^{71.062}$		
38	Dakrias－1	${ }^{134} 2048$	${ }^{6} 371$	910.8049	${ }^{3} 9.004{ }^{\text {a }}$	${ }^{20} 0.80 \times 48$	${ }^{10} 1,080$	＂0，0089	${ }^{32} 0.0088$	W0，008\％	${ }^{6} 1.058$		
$3)$	Detisismog－8	${ }^{3} 128$	${ }^{1} 384$				${ }^{7 \times 10.009}$	${ }^{361} 8.1399$	${ }^{171} 10.13089$	${ }^{1060.2319}$	${ }^{181,778}$		
40	DEEMCOSTEC－1	${ }^{2} 128$	${ }^{2} 172$				न 10.000	${ }^{3} \mathrm{ES} 41.1583$	${ }^{163} 01563$	${ }^{1080} 0.563$	${ }^{169} 1.945$		
41	DEFMALDS－	${ }_{23}^{29} 5$	${ }^{66}$ S42				\＄250000	${ }^{192}$	${ }^{160} 0.13 \% 3$	10．0．137？	${ }^{151,1,817}$		
42	DERMGAJC－3	${ }^{8} 128$	${ }^{\text {s，}} 211$	${ }^{1880.09 \%}$	${ }^{125} 000970$	${ }^{180} 009800$	${ }^{127} 1.5659$	${ }^{18} 8_{0.1281}$	${ }^{158} 0.1281$	${ }^{18} 00,1281$	${ }^{157} 1.52$		
43	DERARSLOC－4	428	${ }^{2} 203$	${ }^{150} 0,0961$	L200，0661	${ }^{18000661}$	${ }^{156}$ L． 581	${ }^{35} 0.1274$	${ }^{157} 0.1274$	${ }^{180} 01274$	${ }^{15617748}$		
45	DERMALDSC－5	${ }^{5} 128$	${ }^{10} 532$	${ }^{7} 0,0113$	280.0113	900113	${ }^{1} 1+089$	${ }^{6} 0.0171$	390，0171	${ }^{89} 00171$	${ }^{1031,137}$		
45	DERMANEG－G	${ }^{35} 256$	${ }^{168} 51$ a	$\$_{0.0050}$	${ }^{15} 000050$	080006	${ }^{59} 1.047$	${ }^{550.0102}$	${ }^{550.0102}$	${ }^{5} 0.0108$	${ }^{72} 1.081$		
45	Eversi－e	${ }^{19} 2048$	${ }^{36} 438$	${ }^{350016}$	\％ 0.0156	${ }^{580} 0.0166$	${ }^{\text {W\％}} 1.141$	38．0209	380.0200	300209	${ }^{12} 1.174$		
47	EvEEAT－1	1720488	${ }^{158} 580$	${ }^{20.05127}$	${ }^{210.0027}$	${ }^{30,0027}$	${ }^{21}, 017$	＂0．805s	${ }^{20.0058}$	20．0066	$1{ }^{1038}$		
48	Eversi－2	${ }^{12} 2048$	${ }^{17} 377$	－ 0.0022	${ }^{2} 200029$	\％0008	\％1．018	${ }^{2} 20.0068$	${ }^{320.0058}$	${ }^{3} 000058$	${ }^{2} 1089$		
43	Everst－s	${ }^{21} 2048$	${ }^{165} 735$	${ }^{18} 0.0023$	${ }^{18} 9,0023$	${ }^{76000023}$	${ }^{17.015}$	${ }^{150,0947}$	15， 1 ，0047	${ }^{15000047}$	${ }^{16} 1.054$		
50	EYEEEA－？	${ }^{30} 41522$	8424				${ }^{120} 10.000$	120．000	1060．3000	${ }^{15} 50.30000$	${ }^{151} 2.8 .84$		
5	Everea－1	121036	${ }^{5} 811$				3810.000	3220．1281	${ }^{172} 0.1381$	${ }^{1720.9981}$	178.226		
52	EVAOEC－2	${ }^{2} 1136$	${ }^{5} \times 29$				T010，000	3730.2000	${ }^{1750} 2000$	${ }^{1760.2000}$	${ }^{12} 2.246$		
53	RYEDRE－\％	${ }^{3} 1036$	7885	${ }^{722} 010613$	T22006613	${ }^{12} 0000613$	${ }^{120} 1,348$	3890.088	T850．0824	${ }^{150} 008824$	${ }^{120} 1.470$		
5	Stor\％0	1818	${ }^{15160}$	${ }^{75} 0.1336$	（130． 1335	${ }^{200130135}$	${ }^{49} 1.865$	189838	T080．1803	100．980 ${ }^{\text {a }}$	${ }^{1332.318}$		
55	G108 $\times 7$	${ }^{10} 17826$	91405	${ }^{123} 0.0932$	${ }^{125} 90.0932$	${ }^{1260.0933}$	${ }^{\text {129 }} 1.6505$	740.129	${ }^{158} 0.1291$	${ }^{750} 0.1291$	${ }^{162} 1.925$		
56	gerrise－17	738300	M 427				${ }^{712} 10.000$				${ }^{30} 10.000$		
55	cortile 1	752156	${ }^{2} 169$	${ }^{1+1} 0.0 .6514$	W30．0414	1090914	${ }^{1151.212}$	T289．1657		T3900627	${ }^{1851.339}$		
58	GORTLA 2	Y1132	${ }^{6 \times 3} 1$	${ }^{3} 0.013 \%$	\％ 0.0137	${ }^{2} 0 \times 013{ }^{\text {a }}$	${ }^{310} 1.067$	${ }^{7} 1000220$	00．0．220	${ }^{30} 0,0220$	${ }^{\text {56 }} 1.116$		
59	GORILLA－3	${ }^{120} 2156$	${ }^{12} 563$	${ }^{453} 0,2045$	${ }^{102} 0.0245$	${ }^{40} 0,00245$	\＄1．110	120．0．0384	${ }^{122} 8.80894$	${ }^{12} 10.02394$	${ }^{17} 1,178$		
63	HBTMNO－C	स9 520	7265				${ }^{310} 10.004$	${ }^{2 \times 2} 0.2785$	${ }^{105} 0.2746$	${ }^{750} 0.2746$	$123 / 2743$		
61	HIK－3		${ }^{19} 9875$				${ }^{151} 10.000$	उ\％ 0.0236	10\％0．0236	＂00．0236	${ }^{7131.176}$		
62	HIK－I	${ }^{01} 1808$	${ }^{29820}$				${ }^{158} 10.000$	40，0，0173	${ }^{1} 80.0173$	${ }^{4} 900188$	${ }^{51} 1.116$		
83	H2M－2	${ }^{20818088}$	${ }^{378} 820$	${ }^{1} 0.0185$	${ }^{31} 00185$	${ }^{\text {m }} 0.0185$	W0．119	${ }^{50.0172}$	50．0172	${ }^{30,0172}$	\＄1．115		
64	Higes	${ }^{50} 1448$	${ }^{132} 633$	${ }^{580.0107}$	${ }^{7800107}$	70000\％	${ }^{2} 1.057$	${ }^{20} 0,0141$	${ }^{420,0141}$	＊20．014i	${ }^{\mathrm{N}} 1.082$		
66.	H以く－4	${ }^{*} 1152$	${ }^{10} 510$	${ }^{580.6105}$	${ }^{2} 90.0104$	7800104	${ }^{4} 1.065$	${ }^{20} 0.0138$	30，0，0138	\％ 0,0139	${ }^{4} 1081$		
46	GIK－5	${ }^{1} 1409$	${ }^{18} 619$	${ }^{2} 0.0034$	${ }^{46} 10034$	200034	${ }^{21} 1018$	${ }^{20} 0.0067$	${ }^{20} 0.0067$	${ }^{20,0067}$	${ }^{*} 1043$		
6π	His－b	${ }^{3} 1408$	उस 610	70,0034	20，0034	20，0034	${ }^{4.008}$	${ }^{31} 0.0667$	${ }^{-10.0067}$	${ }^{3} 0.006{ }^{\text {a }}$	${ }^{2} 1.043$		
68		${ }^{31} 364$	${ }^{2} 416$	${ }^{320,006 e 3}$	${ }^{21000063}$	${ }^{32000633}$	J1．084	${ }^{4} \mathrm{D} .0113$	रक्न13	${ }^{2} 000113$	${ }^{3} 1.000$		
$6{ }^{6}$	108xith－1	${ }^{32} 364$	${ }_{6}^{817}$	${ }^{58} 80.0065$	${ }^{51} 0.0005$	30，00E5	W2， 1035	${ }^{3} 0.0116$	${ }^{5} 50.0116$	${ }^{6} 0,0116$	${ }^{81} 1.072$		
70	IFPMLAL	31364	${ }^{2} 817$	${ }^{3} 10.1900$	${ }^{210,0099}$	30，0099	${ }^{71} .056$	${ }^{7} 0.01126$	${ }^{2} 80.0126$	${ }^{3} 000726$	${ }^{7} 1.061$		
7	ID FMTA－3	${ }^{1528}$	${ }^{729} 689$	＊ 6.0015	${ }^{45} 000054$	${ }^{2} 000054$	${ }^{3} 1.183$	${ }^{4} 0.0085$	${ }^{54} 00065$	700095	${ }^{51.066}$		
72	ID EM （1－4 -4	＂828	1×869	${ }^{39} 10,0052$	10，0052	${ }^{12} 000052$	${ }^{231} 1029$	${ }^{400092}$	${ }^{50} 0.0082$	${ }^{30} 00092$	${ }^{29} 1.051$		

Table 16：Rank－based accuracy for the FRVT 2018 mugshot sets．In columns 3 and 4 are template size and template generation duration．Thereafter values are rank－based FNIR with $T=0$ and FPIR $=1$ ．This is appropriate to investigational uses but not those with higher vohmes where candidates from all searches would need review．Columns 5 － 9 show FRVF 2018 accuracy for various ranks for galleries tmenrolled with all lifetime images．Column 10 is a workload statistic，a small value shows an algorithm front－ loads mates into the first 10 candidates．The last four columns gives analogous resuits for enrollment only of the most recent image －see Figure 8．Throughoat，blue superscripts indicate the rank of the algorithm for that column，and the best value is highlighted in yellow．

| $2019 / 09 / 11$ | FNIR $N, R, T)=$ | False neg．identification tate | $\mathrm{N}=$ Num．enrolled subjects | $\mathrm{T}=$ Threshald |
| :--- | ---: | :--- | :--- | :--- | | $\mathrm{T}=0 \rightarrow$ Investigatian |
| :--- |
| $17.24: 52$ |

		RESOURCEUSKGP．									
	FN（ANM（ $=0$ ，P）	TMM		FRVT 2018 MGGSkOTS							
－	A100\％6HM4	Bietes	Mesc	$\pi=1$	$\mathrm{F}=10$	$8=50$	wonkeld	$\mathrm{p}=1$	$x=10$	$\mathrm{g}=50$	Whork－10
33	3 DEMDV 5	${ }^{24} 956$	${ }^{12} 384$	${ }^{51} 0,0062$	${ }^{41} 0.0062$	${ }^{21} 0.0062$	\＄51．039	${ }^{3} 0.0107$	\％ 0,0107	\％0．0007	${ }^{81,058}$
94	Joekians	＊ 352	32373	${ }^{0} 0.0071$	＂0．0071	570.0071	10，039	${ }^{50.0122}$	${ }^{20} 0.0122$	\＄0，0122	${ }^{2} 1085$
75	7MASUS－01	${ }^{43} 512$	${ }^{4} 43$				${ }^{1810,000}$	${ }^{180,3055}$	${ }^{188} 0.3054$	T\＄503054	132987
96	3Macus－2	${ }^{37} 512$	${ }^{9} 96$	${ }^{150} 0.1883$	${ }^{135} 0.1833$	${ }^{133} 918183$	Tes．0．070	${ }^{127} 0.2223$	$1{ }^{1 / 70,2223}$	${ }^{1 / 7} 0.2223$	［7／2．329
砍	amarus－	${ }^{412}$	${ }^{57}$	${ }^{5 \%}$（，3008	${ }^{139} 0,3008$	${ }^{139} 095008$	${ }^{3} \mathrm{~K}_{2}, 951$	${ }^{188} 0.35 \%$	${ }^{188} 0,3576$	${ }^{18} 03576$	${ }^{1883,380}$
188	JNCODE 0	${ }^{1024}$	${ }^{35190}$	${ }^{1150,0376}$	${ }^{110} 0.0378$	${ }^{113} 0,08775$	${ }^{23} 1.201$	${ }^{2} 0,0515$	${ }^{132} 0.0515$	${ }^{152} 0.0515$	${ }^{122} 1.285$
（3）	12MOODE－1	${ }^{32} 2048$	${ }^{15} 890$	${ }^{51} 0.0131$	${ }^{34} 0.0131$	${ }^{4} 0.0131$	${ }^{78} 1.066$	${ }^{50} 00190$	${ }^{93}$ ， 0190	${ }^{33} 0.0192$	${ }^{3} 1,105$
81	ANOODE－2	${ }^{52} 2048$	${ }^{3} 291$	${ }^{81} 0.0029$	${ }^{3 \%} 0.0120$	\％ 0.0120	${ }^{3} 1.060$	${ }^{50.0203}$	${ }^{38} 0.0203$	\％0．024e	351．113
8	JMESDE－3	${ }^{317} 2048$	${ }^{3} 5$	${ }^{36} 0,0083$	\％ 0.0058	856，0083	${ }^{30,044}$	50.0155	${ }^{5} 50.0153$	${ }^{35} 0.2153$	${ }^{75} 1.086$
82	10nmoleremes－0	${ }^{34} 930$	${ }^{100} 455$				${ }^{18 \%} 10.000$	${ }^{32} 6.0421$	${ }^{127} 0.0421$	${ }^{17 \%} 0.0421$	${ }^{151,234}$
83	mnowswrces	$5^{2} 530$	${ }^{38} 316$				${ }^{182} 10,000$	${ }^{73} 0.0421$	${ }^{1250,0421}$	${ }^{18} 60.0 \leq 21$	${ }^{12121.234}$
84	Inlyclset RES－2	${ }^{51} 530$	$3^{3} 253$	1120．0499	${ }^{78} 8.0499$	${ }^{178} 0.0499$	${ }^{212} 1.354$	${ }^{38} 00,475$	T30，0，475	180．0．045	1201，343
55	ITNNOUMTRXCS 3	${ }^{51} 530$	S1255	${ }^{128} 00.1301$	${ }^{304} 0.0301$	${ }^{1940.08 m}$	1441.147	${ }^{31} 0.00887$	${ }^{1390.0387}$	${ }^{133} 10.0287$	${ }^{1818}{ }_{1,151}$
86	innovetrrect	${ }^{511 / 76}$	${ }^{2} 416$	${ }^{31} 000081$	${ }^{61} 0.0081$	90.0081	${ }^{59} 1.042$	${ }^{34} 0.0149$	${ }^{* 0.0149}$	\＄ 8.8 .149	${ }_{71.087}$
87	2Sxsteges－9	1912078	${ }^{33} 222$	80.0085	${ }^{31} 0.0085$	${ }^{3} 0.0085$	${ }^{76} 1.059$	700136	\％0，0136	80.0136	\＄1．038
88	7515TEME－1	${ }^{101024}$	${ }^{32} 222$	${ }^{3} 000085$	${ }^{310.0085}$	${ }^{9} 0.0085$	${ }^{3}$	${ }^{6} 0,0136$	${ }^{80,0136}$	${ }^{6} 000136$	${ }^{54} 1.098$
88	1518TBMS 2	${ }^{13} 20188$	${ }^{2016}$	${ }^{3} 0.0046$	${ }^{3} 0.0046$	${ }^{3} 0.0045$	${ }^{45} 1.032$	${ }^{\text {\％} 0,00199}$	${ }^{+6} 0.00088$	＋0．2059	${ }^{31.062}$
82	19ysterice 3	${ }^{18} 20088$	${ }^{17} \times 56$	${ }^{3} 000040$	${ }^{32} 0,0040$	${ }^{320.0040}$	${ }^{31.029}$	${ }^{2} 0,0075$	70.0075	${ }^{3 \times 18.0065}$	${ }^{49} 1.057$
91	H002TMAM3	${ }^{21} 292$	${ }^{6} 342$	${ }^{10} 000089$	${ }^{3} 0.0099$	5\％，009\％	${ }^{1351,074}$	${ }^{12} 0.0114$	620，0114	${ }^{64} \times .0174$	1.05
82	J00 Karan $\frac{1}{4}$	55548	W2， 25	\％0．0n9	${ }^{2} 000091$	${ }^{28} 0.0093$	83.084	${ }^{360817}$	$6^{60.0112}$	क0．0127	91．096
88	Tipeycte－9	${ }^{13} 38088$	194．74	${ }^{70.0099}$	${ }^{2} 0.009 \%$	${ }^{40.009 \%}$	${ }^{27,1,048}$	${ }^{5} 00009$	${ }^{50.00194}$	${ }^{\text {s }} 10.0094$	\＄1．152
S	Lescutx 1	${ }^{\text {T／34096 }}$	${ }^{13} 1652$				1920．00］	80，0137	${ }^{80.0137}$	${ }^{8} 80.0137$	${ }^{51.102}$
5	Neccyit－2	${ }^{191} 4096$	［4）${ }^{656}$				1810.080	${ }^{170.0137}$	9.9 .0138	${ }^{*} 0.0137$	${ }^{3} 1.102$
S	Micmorcous 0	15286	${ }^{104525}$				${ }^{10510,001)}$	${ }^{78} 0.5977$	1590，5972	T4． 0.5972	${ }^{5} 5.898$
96	niterofocus－1	${ }^{24} 256$	4）1／547				${ }^{181} 10.600$	${ }^{1760,5972}$	${ }^{156} 0.5372$	${ }^{180} 0.5972$	186.398
S8	Mreropocus－2	${ }^{2256}$	${ }^{185} 529$				${ }^{183} 100000$	${ }^{387} 0.6272$	${ }^{18} 0.6272$	570．6272	${ }^{18} 5.8 .339$
99	Mitctoracus－3	${ }^{1} 1235$	${ }^{6} 269$	${ }^{16} 0.5389$	${ }^{150} 0.5389$	${ }^{1930.5389}$	${ }^{31564,849}$	${ }^{10} 0.5953$	${ }^{151} 0.5953$	${ }^{10} 0.5958$	${ }^{14} 5.575$
100	MKCDOFOCUE－	3_{265}	8 F 20	380，5191	${ }^{2} 350.5191$	${ }^{155} 0.5191$	${ }^{7} 5{ }_{4} 4.688$	${ }^{\text {75 }} 0.5775$	${ }^{7}{ }^{3} 0.58 \times 5$	${ }^{19} 0.5$ ¢0，	${ }^{15,5} 5.212$
101	Nusmarowuc－5	${ }^{15} 56$	${ }^{51} 26$	${ }^{15} 0.3701$	${ }^{391} 0.3701$	${ }^{181} 0,3700$	${ }^{711} 3.437$	${ }^{1 \times 10} 0.4257$	100.4257	${ }^{189} 0.42 .25$	136.887
182	Mtecmpocuc－6	${ }^{15} 256$	${ }^{3} 265$	${ }^{152} 0.3782$	${ }^{195} 0.3732$	${ }^{198} 883732$	${ }^{\text {T }}$ 3． 453	${ }^{190} 0.4283$	${ }^{50} 00,4283$	${ }^{1010} 0.4288$	［1913．897
103	Mk－Rssori－a	${ }^{36} 512$	${ }^{283}$	${ }^{10} 000026$	${ }^{19} 0.0025$	150，002́a	${ }^{16} 1.015$	${ }^{33} 000058$	${ }^{38} 0.0058$	${ }^{2} \times 00058$	${ }^{2} 1.0388$
104	Matcibospms 1	${ }^{31022}$	${ }^{5} 349$	${ }^{1000028}$	${ }^{18} 0.0056$	${ }^{18} 8.0028$	${ }^{15} 1.015$	${ }^{2} 0,0056$	${ }^{3} 0,0056$	${ }^{5} 0,0056$	${ }^{18} 1.038$
105	W0．605s0kT－2	${ }^{381024}$	ग20 565	${ }^{3} 000089$	${ }^{3} 0,0029$	${ }^{3} 8.0022$	${ }^{81.010}$	${ }^{3} 0.0061$	${ }^{35} 0.00 \mathrm{~m} 1$	${ }^{2} 000062$	${ }^{35} 1.041$
106	MECROSOFT 8	71024	${ }^{81} 4$（4．4	${ }^{5} 00011$	\％0．001］	${ }^{4} 0,0011$	30．307	${ }^{+} 0,00332$	${ }^{2} 0.0032$	${ }^{4} 0.0032$	31.022
108	Mcerosomila	12 z 2 4 8	$12 / 788$	${ }^{1} 0.0010$	0．mul	${ }^{1} 0.0020$	11.006	${ }^{2} 0.0158$	\％ 0 （1）39	310］93\％	\％rre2
205	Matcrosofl 6	${ }^{10} 1024$	${ }^{15863}$	${ }^{5} 0.0013$	${ }^{3} 10.0013$	${ }^{5} 0.5013$	3.1007	${ }^{5} 00003$	${ }^{5} 0.0038$	50.0038	1.021
109	Mictosemfi－	${ }^{3} 1024$	${ }^{152} 695$	${ }^{7} 0.0014$	${ }^{7} 0.0012$	70．001分	d．007	${ }^{3} 000035$	${ }^{3} 0.0033$	${ }^{8} 8.0033$	1,023
410	NECA	1729592	10.82	${ }^{33} 0.0127$	${ }^{2} 0.0128$	20，0127	${ }^{9} 1.066$	${ }^{3} 0.0196$	${ }^{510.0196}$	${ }^{3} 0.0194$	21．110
41	$\mathrm{NBC}-1$	${ }^{17} \cdot 2592$	${ }^{11} 88$	${ }^{50.00164}$	${ }^{580.0164}$	${ }^{32000164}$	${ }^{521,101}$	${ }^{166} 000235$	${ }^{1020} 0.0235$	${ }^{185} 0,0225$	${ }^{10} 1.158$
112	NBC－2．	${ }^{1} 01615$	${ }^{191} 653$	${ }^{3} 000011$	${ }^{8} 0.0011$	${ }^{3} 0.0041$	${ }^{6} 1.009$	${ }^{1} 0.6028$	40，0028	${ }^{1} 0,0028$	${ }^{5} 1.043$
113	Nsec3	${ }^{702} 1712$	${ }^{350} 690$	${ }^{5} 0.0013$	${ }^{6} 0.0013$	${ }^{6} 0.0013$	\％ 1.011	3.00031	${ }^{3} 0,0031$	${ }^{3} 0.0051$	${ }^{8} 1.025$
114	NSURTSTEFNOLOS－－8	${ }^{51} 521 \%$	${ }^{18}$				${ }^{172} 10,000$	${ }^{18} 0.0497$	${ }^{188} 0.0497$	T_{500089}	${ }^{1851.278}$
115	Niautorichinoloev－1	3×5814	1＊\％61				1810.000	${ }^{35} 0.0457$	230,0457	${ }^{13}$	$1{ }^{18} 1.250$
116	Nsuras berivolas Y －2	${ }^{71 \times 15}$	${ }^{2} 088$				${ }^{1 / 3} 10.000$	${ }^{136} 004465$	${ }^{12400445}$	${ }^{1440.0465}$	12， 1,249
117	NEORDTALHMCLOCS－3	3\％2048	${ }^{165} 547$	50.0198	${ }^{88} 0.0109$	380．0199	${ }^{25} 7.108$	${ }^{30} 00.0250$	${ }^{2} 90.0850$	100×1250	${ }^{1661,148}$
118	NBMPOTECHWOLOCY－4	${ }^{142} 2048$	${ }^{215} 543$	${ }^{35} 000058$	${ }^{38} 0.8058$	${ }^{5} 50.0058$	$5^{51,037}$	${ }^{41} 0,0 / 192$	${ }^{40} 0,00882$	${ }^{41} 0.9092$	${ }^{34} 1.088$
419	NBUROTECHNOLCKES 5	${ }^{15} / 256$	${ }^{3+1} 412$	${ }^{3} 000042$	${ }^{3} 1.0042$	${ }^{39} 0.042$	\＄2，1．026	${ }^{3} 0,00068$	${ }^{31} 0.0068$	${ }^{21} 90.0068$	${ }^{3} 1.050$
129	MBUZOTECHENOLOCV： 6	1256	${ }^{102} 746$	${ }^{5000155}$	${ }^{31} 0.0153$	${ }^{30} 0,0153$	8\％，070	\％0，0201	${ }^{50} 0,0801$	${ }^{35} 8.0201$	${ }^{5} 1.102$
121	は8Nrankir	${ }^{70102048}$	${ }^{198} 868$				\％ 10.000	${ }^{29} 0.0811$	${ }^{751} 0.0 .0811$	${ }^{720} 9.0812$	${ }^{151} 1.481$
122	NOESE－1	उस12048	${ }^{31} 211$	3802049	${ }^{3517} 0.2049$	${ }^{199} 0.2043$	5， 3 ， 10	${ }^{718} 0.2512$	${ }^{18} 0.2512$	14.12512	${ }^{76} 2.698$
123	NOELP－2	${ }^{310} 6142$	${ }^{5} 51035$	${ }^{750.1565}$	${ }^{192}{ }^{10.1565}$	${ }^{152} 6.1565$	1527，367	${ }^{102} 0.81816$	W0．1316	${ }^{10} 0.1876$	${ }^{136} 2.088$
124	NTECHLNSE－4	${ }^{16} 64442$	${ }^{163} 835$	${ }^{1000087}$	＂0，1007	ए0，0087	59． 6138	${ }^{30} 0.0115$	${ }^{39} 0.0115$	${ }^{83} 0.9115$	${ }^{1} 1.064$
125	NTECHLAB－1	${ }^{3} 81736$	$\square^{4} 105$	${ }^{30,0097}$	20，0007	$8{ }^{810097}$		\＄0，0159	${ }^{5} 0^{6} 0.01399$	－10．0．09\％	\％ 1.674
128	NT pertas 3	${ }^{19} 93481$	${ }^{1+1} 831$	${ }^{22} 0.0051$	${ }^{22} 0.0051$	${ }^{\text {2 } 20.0051 ~}$	${ }^{32} 1.104$	${ }^{4} 00082$	${ }^{21} 8.6082$	${ }^{40} 00082$	\％i． 1.947
42\％	NTSCRLAB－4	${ }^{1 \times 3484}$	${ }^{788} 89$	${ }^{21} 0.0040$	${ }^{31} 0,0940$	I50．002a	${ }^{1} 1.019$	${ }^{39} 000068$	${ }^{320,0068}$	${ }^{30} 0.0088$	＊1．041
129	Freshlases	${ }^{188} 1940$	${ }^{101877}$	${ }^{3} 0.0039$	＂0，0039	${ }^{5}$	${ }^{31} 1.018$	80.0064	${ }^{28} 0,0064$	${ }^{20} 0,0064$	H1．037
12 s	NTECHLABB－5	${ }^{210} 19240$	${ }^{25} 841$	${ }^{2} 0.0034$	${ }^{2} 0,00034$	${ }^{2} 0.0035$	${ }^{18} 1.015$	${ }^{4} 0.00059$	${ }^{3} 0.0059$	${ }^{3} \mathrm{O}, 00 \mathrm{Sg}$	${ }^{15} 2,034$
$138-$	QUAMTASPFT I	${ }^{22} 2048$	${ }^{6} \times 6$	${ }^{510} 038957$	W0，9857	${ }^{127} 0 \cdot 6.857$	${ }^{31}$	${ }^{150.2198}$	${ }^{26} 0 \times 2198$	${ }^{150} 02158$	${ }^{101} 2.559$
131	RSJVKDNF－0	1288	${ }^{5} 50$	7190，0319	${ }^{1680} 0.0319$	${ }^{708} 0.0819$	${ }^{118} 7.188$	${ }^{133} 000455$	${ }^{[20} 0.0465$	${ }^{725} 51 . \sqrt{4955}$	Tr1， 275
132	RANKONB－1		ए136	＂0．0154	＂0．0194	50．0194	श1．109	${ }^{788} 0.0 .0247$	${ }^{10880.0247}$	${ }^{158} 0.0247$	151.145
193	RaNKONS－2	${ }^{12} 133$	${ }^{14} 12$	${ }^{8} 6.0149$	${ }^{20} 0.0149$	\％0．0149	${ }^{30} 1.006$	${ }^{100} 0,0221$	${ }^{102} 6.00227$	${ }^{102} 0.0221$	${ }^{40} 1.135$
134	Rask	${ }^{7} 1.33$	1214	${ }^{20} 000149$	${ }^{3} 0,0149$	80.0149	${ }^{3} 1,086$	${ }^{160.0221}$	${ }^{10} 0.0221$	${ }^{10} 0.0221$	${ }^{10} 1.136$
125	－xNCOME－4	${ }^{185}$	${ }^{3} 3$	${ }^{35} 000318$	${ }^{265} 0,0318$	${ }^{\text {u5 }} 0.0318$	${ }^{175} 2.171$	${ }^{530} 00441$	${ }^{13} 80.0441$	${ }^{132} 8.04441$	261． 249
136	Batarans－5	${ }^{1} 133$	1834	${ }^{9} 000072$	${ }^{19} 0.0072$	${ }^{18} 0,0072$	5\＄1．042	${ }^{20} 00120$	${ }^{38} 0.0120$	${ }^{68} \mathbf{8 1 0 1 2 0}$	391.078
437.	REALNETNOTKS－6	${ }^{136} 4100$	${ }^{3} 74$	${ }^{15} 0.0443$	${ }^{2120.04443}$	${ }^{11} 90.0443$	121．232	${ }^{23} 000426$	${ }^{731} 0.0426$	${ }^{131} 0.0426$	12.81 .222
129	REALNETMORISS－1	${ }^{786} 4104$	${ }^{3} 243$	${ }^{11} 0.0329$	－70．0329	\％ 0.0329	${ }^{20} 41.163$	${ }^{730} 0.426$	${ }^{30} 0.0426$	${ }^{19} 80.0426$	191．222
129	Fexhnetwonts－2	${ }^{390} 4104$	${ }^{3} 215$	${ }^{31} 0.0 .3520$	${ }^{39} 00.0329$	${ }^{20} 00.0320$	ram_{7159}	${ }^{13} 000418$	12000118	1250.0418	121.217
140	（EDMATSA1－4	${ }^{135} 2048$	${ }^{18} 615$	50.00055	${ }^{51} 0,0065$	${ }^{10.0068}$	181，034	${ }^{300010}$	${ }^{50.0109}$	${ }^{30} 0100$	${ }^{3} 1.065$
441	REMSA MCA1－2	${ }^{318} 2048$	＊ 434	${ }^{9} 0.0052$	${ }^{50} 0.0062$	${ }^{51} 0.00102$	$\sqrt{21.031}$	\％amas	$8_{6,0105}$	\＄50．0105	$4_{2,061}$
142	SEUSETIME－0	${ }^{168} 8104$	${ }^{132} 815$	${ }^{15} 0.0018$	${ }^{13} 0.0018$	${ }^{12} 0.0018$	${ }^{14.014}$	${ }^{15} 0,0048$	${ }^{16} 0,0048$	${ }^{15000448}$	${ }^{3} 1,040$
143	SEMSATMME－1	${ }^{788} 4104$	${ }^{212} \times 656$	${ }^{11} 0.0018$	${ }^{12} 0,0018$	H00013	${ }^{131,013}$	${ }^{17} 000048$	${ }^{170,0048}$	${ }^{17} 0,0048$	${ }^{31} 1.040$
244	SHAMSY－A	${ }^{19} 4096$	${ }^{113} 588$				${ }^{1310.000}$	150.780	${ }^{165} 0,1707$	${ }^{1550.150 \%}$	${ }^{165} 2.092$

Table 17：Rank－based accuracy for the FRVT 2018 mugshot sets．In columns 3 and 4 are template size and template generation duration．Thereafter values are rank－based FNIR with $T=0$ and FPIR $=1$ ．This is appropriate to investigational uses but not those with higher volumes where candidates from all searches would need review：Colums 5 － 9 show FRVT 2018 accuracy for vatious ranks for galleries unenrolled with all lifetime images．Column 10 is a workload statistic，a small value shows an algorithm front－ loads mates into the first 10 candidates．The last four columns gives analogous restults for enrollment only of the most recent image －see Figure s．Throughout，blue superscripts indicate the rank of the algorithm for that column，and the best value is highlighted in yellow：

2019／09／11	FNIR ${ }^{\text {N }}$ ，R，T $\mathrm{T}=$	False neg identification tate	$\mathrm{N}=$ Num，enrolled subjects	$T=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
17：24：52	$\operatorname{FPIR}(\mathbf{N}, \mathrm{T})=$	False pos．identification tate	$\mathrm{R}=$ Num．candidates examined		$\mathrm{T}>\mathrm{O} \rightarrow$ Identification

MUSSESOUTSIDE EAMKR		Qu	AcE	GNROU SIFETMME CENSOUDATED $=$ I..ph				ENTROCMCST 2 BCRNT $\mathrm{Na}=1.6 \mathrm{M}$			
	Momat, $\mathrm{T}=0, \mathrm{M}$	TEMPLATE		GR¢C2018 MOGSHOTS							
\#	51ESTITHAS	EYTES	MGAC	$\mathrm{r}=1$	$\mathrm{R}=10$	$R=59$	work-19	8-1	$\mathrm{B}=10$	$\mathrm{r}=50$	WOMK-10
115	SHNMLT-1	${ }^{18} 840 \% 6$	${ }^{121557}$				2010.000	360,1718	180.1718	16818178	TM,
146	S.H.AMAN-2	${ }^{118192}$	${ }^{122} 557$				1910.000	138582600	${ }^{1520228520}$	${ }^{189} \times 12620$	${ }^{182} 2.710$
140	Shathatioz	1212043	15804	${ }^{12} 0,0089$	${ }^{12} 0.0909$	${ }^{12} 000 \times 23$	${ }^{181} 1.613$	${ }^{158} 0.1266$	${ }^{18 \times 1206}$	${ }^{1201265}$	1901,811
148	5 Ha	${ }^{181} 2038$	${ }^{135642}$	${ }^{13} 91867$	${ }^{191}$	${ }^{192} 0198$	${ }^{1312.163}$	${ }^{18} 80.2242$	${ }^{176022422}$	${ }^{1080} 02242$	[2. 2.431
140	SHAMAN- ${ }^{\text {a }}$	${ }^{162} 2043$	${ }^{152} 706$	${ }^{\text {r }}$	020.0312	${ }^{16} 000372$	${ }^{131240}$	09.0424	180.0424	1200424	121332
150	sHEMar-7	${ }^{17 / 20488}$	${ }^{158} 729$	${ }^{3} 58.0810$	${ }^{13} 0.0310$	${ }^{26} 00310$	${ }^{179} 1.248$	${ }^{1880,0422}$	1820.0422	${ }^{183} 0.0422$	${ }^{131} 1.337$
151	S14.-6	${ }^{5} 1096$	${ }^{57} 358$				70, 10.500	ए0.0101	${ }^{50} 0.95000$	${ }^{2} 00101$	${ }^{2} 1.059$
752		${ }^{159} 20.52$	${ }^{\mathrm{TSP}_{\text {R42 }}}$	${ }^{188} 11.2839$	${ }^{135} 0.2639$	${ }^{780} 0.2639$	${ }_{120} 3372$	${ }^{18} 0.0039$	${ }^{10} 0.0039$	${ }^{2100039}$	${ }^{11.031}$
153	6195-2	${ }^{159} 2058$	${ }^{510} 906$	${ }^{150} 0.2128$	${ }^{150} 0.2128$	${ }^{150} 02128$	${ }^{19} 29313$	${ }^{110,0040}$	${ }^{3} 0.0040$	${ }^{13} 0.0040$	${ }^{4} 1.1132$
154	Suplaser-0	${ }^{5} 1022$	${ }^{1} 168$				12100900	${ }^{170} 0.1931$	${ }^{130} 0.1931$	1201sel	\$2.204
255	SMCLART-1	揊1024	${ }^{1+5662}$				16510.000	${ }^{12} 80.2188$	7300.2788	1702188	2.435
150	SMTART-2	${ }^{\text {T10 }} 1024$	${ }^{12} 2560$				17970.000	120.1926	7π ¢1946	170196	${ }^{+5.185}$
157	SNILARTS	${ }^{3} 512$	78157	1P 0.9531	${ }^{147} 0.58531$	12009581	${ }^{147} 9.573$	${ }^{188} 0.9649$	1700384	${ }^{180} 09648$	W9.9.6/8
230	Smilarus	${ }^{125} 2038$	${ }^{10} 454$				17810.000				${ }^{31} 10.000$
15	3yazsis-b	${ }^{3} 512$	237				18.10 .90	7510.121	189,1021	${ }^{109} 01621$	725.387
160	5winers 3	${ }^{121}{ }^{4076}$	${ }^{13} 193$	120.1350	${ }^{13} \mathrm{P} 1.1950$	${ }^{13104350}$	${ }^{1512088}$	W 0.1721	${ }^{13 \%} 0.1721$	1201921	${ }^{1+1 / 40}$
161		${ }^{12} 2048$	594				${ }^{155} 10.000$	1040.922.5	W20.0225	${ }^{105} 0.0225$	81.122
162	TEMISN-1	${ }^{1+6} 2048$	37398				cा\$ 10.000	${ }^{115}$	${ }^{1250.0225}$	${ }^{18} 0.0225$	T1.122
168	TEYLAX-2	1292048	-3/397				12\% 10.000	ए20.022	${ }^{120} 0.0224$	${ }^{1060.0224}$	${ }^{181121}$
164	TEMAAK3	${ }^{129} 2048$	${ }^{58} 300$	T0,0102	70.0102	"00, ${ }^{\text {a }}$	${ }^{2} 1.052$	${ }^{39} 0.0169$	${ }^{*} 00016$	${ }^{0} 00169$	${ }^{761083}$
168		${ }^{135} 2048$	535297	$0^{0} 0.0080$	"0.0080	${ }^{2} 000080$	${ }^{210441}$	720.0134	${ }^{0} 0.0134$	700134	${ }^{61,076}$
166	TEMTAMOS 5	${ }^{18,2048}$	${ }^{36} 416$	${ }^{*} 0.0063$	\$9.0063	${ }^{29} 00003$	${ }^{2} 1.108$	${ }^{880.0092}$	\$0,0062	W00092	${ }^{\text {a }} 1.05$ \%
183	TICER-0	${ }^{155} 2052$	${ }^{3} 4628$	${ }^{17} 0.0480$	17\%0,0480	${ }^{12} 20.0480$	${ }^{112} 1.249$	${ }^{710.0098}$	${ }^{14} 9.0838$	${ }^{14500608}$	${ }^{19} 1 \times 34$
168	Tecerk-1	${ }^{156} 2052$	${ }^{78} 398$				${ }^{189} \div 0.000$				${ }^{42} 10000$
162	19820-2	${ }^{152} 2052$	${ }^{102} 454$	${ }^{35} 0.0004$	550.044	${ }^{3} 000 \leq 4$	${ }^{3}$. 1.022	${ }^{39} 000075$	${ }^{3} 0.00085$	${ }^{*}$ atoovs	${ }^{38} 1005$
170	T1cser-3	${ }^{175} 2052$	${ }^{101} 454$				${ }^{15} 9.0 .000$	${ }^{380.0075}$	3, 00008	200075	${ }^{3 \times 1.045}$
171	ronkeramans-0	${ }^{162} 2080$	${ }^{27} 190$	80.0050	${ }^{3} 0.006$	${ }^{50,0060}$	${ }^{01036}$	580.0095	${ }^{5800005}$	${ }^{2} \times 0005$	10.062
172	TONGXTKANS-1	${ }^{191202000}$	${ }^{3} 139$	${ }^{31} 0.011 \frac{1}{=}$	\$0.0114	90.0114	\$1.073	${ }^{320.0005}$	${ }^{57} 0.0058$	${ }^{50} 00005$	${ }^{1 / 1.062}$
13	T0. Hiba-lit	${ }^{3} 1548$	${ }^{153} 230$	${ }^{4} 0.0033$	${ }^{3} 00003$	${ }^{\text {Na00063 }}$	${ }^{2 k} 1.018$	${ }^{320,0058}$	${ }^{32} 000068$	${ }^{8200065}$	${ }^{31} 1.046$
3174	rasinbs-1	${ }^{152} 2060$	${ }^{1931}$	${ }^{8} 0.0005$	${ }^{2} 0,0035$	${ }^{3}$ a00es	${ }^{5101019}$	${ }^{3} 40,00011$		${ }^{3} 0.0601$	\$1.04
125	x $=-10$	${ }^{761028}$	${ }^{31} 33 \%$	${ }^{1036.4303}$	${ }^{1 * 3} 0.4560$	${ }^{15} 040.03$	${ }^{183} 3.703$	${ }^{19} 30.4851$	${ }^{192} 094751$	${ }^{1580,4,351}$	${ }^{131} 4.074$
126	No-1	${ }^{151} 2052$	${ }^{158} 695$	${ }^{202} 0.0221$	${ }^{193} 0.0022$	${ }^{102} 00022$	${ }^{102} 1140$	${ }^{155} 0.0362$	${ }^{15} 0.0302$	${ }^{156} 000302$	${ }^{238} 1.197$
177	MEMLANTSOLOTIONS-A	${ }^{35} 1544$	${ }^{130} 923$				${ }^{36610.000}$	${ }^{150} 01254$	${ }^{151} 01254$	${ }^{154} 0.1254$	${ }^{151 / 172}$
18	VCOLANTSCOUTIONG-1	${ }^{256} 2056$	${ }^{168} / 39$				${ }^{26810.000}$	${ }^{1774} 0.2088$	${ }^{170} 0202138$	${ }^{1740} 02038$	${ }^{2010.2 .210}$
178	VICHAMTSODOMONS-2	15 154%	${ }^{177} 920$				${ }^{120} 10.000$	${ }^{180} 0.3387$	${ }^{130} 0.2385$	${ }^{19} 02.388$	${ }^{7} 78.555$
180	VICILANTSCLITIONG-3	${ }^{9} 15.4$	${ }^{155} 532$	${ }^{212} 0.0545$	${ }^{191} 0.0549$	1900549	151230	${ }^{1380.0719}$	${ }^{12} 0.0718$	${ }^{14}$ a0,	${ }^{172} 1.378$
183	YGitiantsolutions 4	${ }^{9} 1544$	${ }^{183830}$	${ }^{2} 80.0983$	$120,09 \% 3$	${ }^{18} 00093$	${ }^{1 \times 2} 1549$	1560,1272	1501272	${ }^{150} 0.1272$	1551.722
782	WICTANTSO WTIONS 5	${ }^{4} 1544$	175988				T 5 20.000	${ }^{6} 0.0118$	${ }^{6} 0.1818$	${ }^{200118}$	${ }^{81} 1.063$
188	YROLANTSOCOTIONS-5	${ }^{26} 15415$	${ }^{156} 834$				T10.000	${ }^{20} 0.0325$	${ }^{2} 0.0125$	\$0,0125	${ }^{31} 1.072$
184	VISTCASILAES-3.	${ }^{13} 256$	35228	9000050	${ }^{+10,0000}$	$1{ }^{100050}$	1.04)	${ }^{46} 0.0068$	<00.0089	+50.0089	${ }^{0} 1.1072$
186	NSTOMLAPA5-4	256	8\%/315	W0,0020	T0,0020	${ }^{1000020}$	${ }^{12} 1.013$	${ }^{120.001044}$	${ }^{12} 0.0044$	T20,0044	${ }^{21.032}$
156	YISIOMLABS-5	अ512	${ }^{57} 300$	${ }^{12} 5.80018$	${ }^{32} 0.0018$	${ }^{23} 000018$	${ }^{31} 1.012$	${ }^{180,0041}$	${ }^{31} 0.0042$	${ }^{12} 0,0041$	${ }^{5} 1,029$
187	PISIONLAES-6	${ }^{512}$	56.98	${ }^{9} 0.0015$	${ }^{9} 0.0015$	${ }^{9} 000015$	${ }^{30} 1.011$	${ }^{5} 0.0003$	T0.0033	${ }^{7} 00083$	${ }^{7} 1.025$
188	vesiomakes-7	\$512	${ }^{12}{ }_{2} 93$	30.000	${ }^{3} 0.0014$	${ }^{8} 000044$	${ }^{1} 1.010$	${ }^{6} 0.0038$	50003 c	${ }^{6} 00033$	${ }^{1} 1025$
199	vocorrin	${ }^{*} 688$	${ }^{15} 5366$				120, 10,000	${ }^{120} 000402$	${ }^{120} 0.0468$	${ }^{12200463}$	${ }^{132} 1,301$
190	vecord-	${ }_{6}^{6088}$	${ }^{111} 536$				${ }^{180} 10.0000$	${ }^{152} 0.0 \leq 52$	${ }^{122} 000402$	${ }^{122} 10402$	${ }^{19} 1.299$
195	sceprot-2	${ }^{131} 2048$	${ }^{131} \times 135$				36900000	${ }^{120} 0,0,032$	${ }^{190} 0.0392$	${ }^{1250.0382}$	${ }^{1312,290}$
192	xiceprima	${ }^{50} 80$	${ }^{51} 14$	550.0067	${ }^{5} 80.00 \leqslant 7$	" 60006	${ }^{51,038}$	${ }^{+8} 0.00085$	${ }^{5} 50.0083$	W00ces	${ }^{+1.052}$
198	vocorit-4	ए\%6	${ }^{10} 5388$	590,0034	${ }^{2} 20.0098$	${ }^{2} 00004$	${ }^{51} 1.051$	${ }^{52} 0,0102$	T0.0306	ए0.0162	${ }^{29} 1,068$
194	Nexarte-5	${ }^{5} 769$	${ }^{1275} 322$	*0.0057	+60.00\%	${ }^{6}$	${ }^{51.036}$	${ }^{370.0092}$	${ }^{50} 0.00 \% 2$	\$0.0082	${ }^{14} 1.063$
39	YCCOORT-6	${ }^{31} 10240$	${ }^{11} 325$				9010.000	${ }^{12} 1.0000$	${ }^{191} 1.1060$	${ }^{265} 1.0000$	${ }^{193} 10.000$
19\%	97SHEFCO-91	${ }^{155} 2108$	${ }^{127} 615$				${ }^{1010.000}$	710.0268	179.0268	1710.0268	ch1147
197	75HEN5-1.	${ }^{176} 3704$	74387	30.0208	\$0.0308	${ }^{7} 0.0208$	${ }^{31} 1.105$	150.0.020	${ }^{13+0.0290}$	1790.0200	W1.156
188	Y $710-9$	${ }^{\text {W) }} 4136$	${ }^{153} 633$	\$70.0047	${ }^{3} 00.0047$	${ }^{9} 00047$	${ }^{23} 1.037$	${ }^{360,0074}$	${ }^{3} 0.1007 \pm$	${ }^{3} 000074$	${ }^{2} 1.055$
199	x $\mathrm{TL}-1$	${ }^{\mathrm{T}} \mathrm{H} 418 \mathrm{Sm}$	3 3 939	$5 \mathrm{SO}, 0046$	* ${ }^{0} 0.0445$	${ }^{3} \times 10046$	${ }^{41.131}$	${ }^{380.0072}$	${ }^{*} 0.0072$	${ }^{200072}$	${ }^{31.052}$
200	YTu: 2	${ }^{19} 41138$	ए2870	${ }^{30} 00015$	${ }^{2} 0.0015$	${ }^{10} 90005$	71.010	140.0041	${ }^{3+0.0044}$	${ }^{1900044}$	${ }^{21} 1.035$
203	ร1TU-3	${ }^{172} 4128$	15377	${ }^{17} 0.0023$	${ }^{18} 0.0725$	"000023	${ }^{2} 1.018$	${ }^{150,0054}$	${ }^{5} 0,0054$	ए0,0084	${ }^{5} 1.0 \pm 1$
20.2	YT\%-4	${ }^{153} 2080$	${ }^{15} \mathrm{~g} 10$	949003	S97024	dersous	${ }^{3} 1008$	${ }^{6} 0.003 \%$	50.0038	${ }^{3} \mathrm{cogrgz}$	${ }^{12} 1.031$
308	Yro-5	${ }^{1012000}$		${ }^{120,0040}$	120,0020	2000020	T1.016	${ }^{18} 0.00098$	${ }^{18} 000048$	${ }^{18} 000048$	${ }^{3} 1,0 \leq 1$

Table 18: Rank-based acouracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation duration. Thereafter values are rank-based FNIR with $T=0$ and $F P I R=1$. This is appropriate to investigational uses but not those with higher volumes where candidates frotn all searches would need review. Columms 5 - 9 show FRVT 2018 accuracy for various ranks for galleries wnemrolled with all lifetime images. Column 10 is a workload statistic, a small value shows an algorithm frontloads mates into the first 10 candidates. The last four columns gives analogous results for enrollment only of the most recent image - see Figure 8. Throughout, biue superscripts indicate the rank of the algorithm for that column, and the best value is highlighted in yellow:

2019/09/11	FAIIR $(N, R, T)=$	False neg identification rate	$\mathrm{N}=$ Num, enrolled subject	T = Threshald	T $=0 \rightarrow$ Investigation
17.24.52	$\operatorname{FPIR}(\mathbb{N}, \mathrm{T})=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined		T>0 \rightarrow Identification

MTEDES EBLOW THR ESHOLR,T BNIR($\mathrm{N}, \mathrm{T}>0, \mathrm{R}>1$		DATASET: REVT 2019 M MGSHOTS			EAROL MCET RECENT MUESICT, $\mathrm{K}=1$.बM Datasby whealo pedes			DATASER ERORLB PRORES		
6	GLGORTTHM	Fmicoupen	HFIK $=0.21$	PFCR=0.1		सराr $=0.81$	FC178-0, ${ }^{\text {a }}$	जFRR $=0.001$	FPIR $=3$ [. 0.2	EPCR $=0.4$
1	SDIVL 0	${ }^{11_{0}, 256}$	${ }^{159} 0.260$	${ }^{158} 0.0 .086$	${ }^{115} 0.425$	${ }^{12} 00802$	${ }^{1250.180}$			
2	30NVI-1	$180_{0.256}$	${ }^{19560.160}$	${ }^{136} 0.087$						
3	3 CNK	${ }^{13} 00255$	${ }^{136} 0.164$	${ }^{135} 0.049$						
4	30M1-3	${ }^{15} 0,4042$	530.284	${ }^{53} 8.178$	${ }^{1410,626}$	${ }^{133} 0.497$	${ }^{5 \times 2} 0243$			
5	30pme4	${ }^{105} 10171$	${ }^{105} 0.006$	1950.047	${ }^{180} 6343$	${ }^{48} 88237$	00738			
${ }^{6}$	3DNIL5	${ }^{150,169}$	${ }^{10} 50.005$	${ }^{102} 0.0478$	${ }^{2 \times 1513,39}$	${ }^{15} 8.234$	${ }^{26} 0137$	${ }^{0} 0.995$	30.887	\% 99
7	307THEK	${ }^{1640120}$	1700088	${ }^{10} 0.051$	${ }^{10} 00.342$	${ }^{150}$ (1238	${ }^{10} 0,342$			
8	Sticitcer ${ }^{\text {a }}$	${ }^{20140}$	${ }^{010003}$	${ }^{50} 0.135$	\%0,216	${ }^{3} 01.146$	${ }^{80} 0897$			
9	ALCRERA-I	180.239	TP909\%9	198995	${ }^{151} 1.000$	192.1.000	${ }^{10} 2.000$			
19	A SCHERA-2	180.490	${ }^{155}{ }^{1} .354$	${ }^{156} 0.184$	${ }^{15} \times 1.591$	${ }^{180} 8.492$	180295			
11	ALIPSERA ${ }^{\text {a }}$	${ }^{80} 8189$	${ }^{50.073}$	${ }^{36} 6_{0,080}$	${ }^{1 / 2,239}$	${ }^{320.152}$	${ }^{* 90.091}$	${ }^{38} 0899$	${ }^{2} 0.888$	${ }^{2} 0.921$
12	FNVEE -	${ }^{8} 0.120$	${ }^{36} 00065$	${ }^{8 \%} 0.083$	${ }^{50.220}$	${ }^{1} \times 151$	${ }^{8} 0.088$	${ }^{18} 0991$	${ }^{2} 0.885$	\% $087 / 2$
13	SNKEI	${ }^{3} 0,122$	${ }^{81} 0.0655$	${ }^{68} 0,033$	\%00.20	${ }^{19} 10.151$	${ }^{30} 0,089$			
12	ANCise-9	W0,983	${ }^{1250} 0128$	${ }^{1580.085}$	${ }^{150,0817}$	T0.253	${ }^{180} 0138$			
15.	3 M S RE-1	${ }^{50} 0,386$	${ }^{1250.127}$	${ }^{152} 0.081$						
18	Ankare-2	${ }^{19} 0987$	${ }^{1220,720}$	${ }^{189} 0.0788$						
17	SWARE-3	${ }^{50} 0,131$	${ }^{100} 0.085$	${ }^{418} 8.051$	9025	${ }^{150} 0204$	590.132			
18	SWARE-4	${ }^{18} 0.271$	${ }^{138} 0.177$	${ }^{19} 80.107$	${ }^{188} 0.509$	${ }^{125} 0.375$	${ }^{18} 08.253$			
19	3 Wasit-5	${ }^{18} 0.375$	${ }^{1650} 0$ nes	${ }^{185} 0.050$	${ }^{8} 8.253$	${ }^{36} 0.163$	\$0009	$33^{31.000}$	${ }^{3} 0.999$	*30988
20	NXSAREC-8	${ }^{180} 0.278$	1454.178	${ }^{156} 0.109$	${ }^{1380,398}$	${ }^{15} 10.283$	${ }^{3801888}$			
21	arandx-9	${ }^{150} 0811$	${ }^{189} 0.725$	${ }^{15040588}$	${ }^{152} 0,939$	${ }^{44} 0892$	${ }^{15} 0802$			
32	hronde-1	${ }^{135} 0.325$	${ }^{185} 0.702$	${ }^{123} 0.526$	${ }^{18} 8.290$	${ }^{50} 0.845$	${ }^{18} 07038$			
23	Stavide	180325	${ }^{1880,702}$	${ }^{18} 8^{8} 0.526$	${ }^{20} 19220$	520845	${ }^{380} 0.702$			
24	Camer-1.	${ }^{T \times 3} 0.684$	${ }^{1020} 0549$	${ }^{188} 80375$	${ }^{140.875}$	${ }^{14} 8.643$	190.488			
25	candy-2	${ }^{12} 0537$	${ }^{1690.402}$	(641) 242						
26	Cheme3	00.074	${ }^{80} 0.050$	${ }^{17} 0.055$.	${ }^{4} \times 1.132$	${ }_{0} 0108$	"0.094			
48	Exami4	"0.074	\% 0.056	${ }^{10140.050}$	${ }^{80} 8.136$	${ }^{88} 0.100$	${ }^{3} 0.083$	${ }^{2} 8989$	अC684	"082k
48	camyls	F0,102	${ }^{99} 0.088$	${ }^{133} 0.069$	720178	ए2.132	${ }^{\text {P0, }} 120$			
29	ROC.mलt-0	*0.05	${ }^{38} 0.032$	${ }^{56} 0.120$	W1.149	\$40.100	${ }^{3} 0.069$			
30	Dogmit 1	U0566	${ }^{5} 0.082$	${ }^{10} 0,020$	${ }^{6} 0.149$	${ }^{12} 0.100$	${ }^{2} 0.069$			
31	COCEMT-2	\$0,04?	+20.020	30010	${ }^{1} 0.088$	${ }^{2} 0,063$	${ }^{2} 0.036$	${ }^{26}$, 387	${ }^{3} 0983$	${ }^{3} 0.988$
32	DOghat-3	*0,051	${ }^{180,0.8}$	${ }^{19} 00009$	${ }^{2} 0.008$	${ }^{2} 0,061$	${ }^{2} 0.037$			
33	coonmec-d	P0163	${ }^{1050003}$	${ }^{120} 0.053$	${ }^{100} 0.300$	${ }^{30} 0200$	\%0.115			
34	Doontre-1	00.105	${ }^{7} 0.065$	${ }^{8} 0.1027$	${ }^{32} 0.230$	\%0.138	-0x]			
35.	bocmrec-2	\%. 0^{156}	${ }^{5}$	${ }^{3} 0.014$	${ }^{2} 0.178$	$\left.{ }^{30} 6.10\right]$	${ }^{\text {a } 0.050 ~}$	31.000	${ }^{4} 6547$	${ }^{3} 0936$
35.	Dramere-3	${ }^{4} 0.055$	${ }^{40} 0.028$	${ }^{510} 0014$	${ }^{\text {W }} 0.162$	" 1009	${ }^{2} 0,050$			
37	DSHMA-?	"0939	70.0.4.7	${ }^{380.322}$	\%0.135	${ }^{5} 0.083$	"0.046			
38	DABLSA-1	\%0075	${ }^{50} 00039$	50.013	${ }^{4} 0.122$	${ }^{40.075}$	ए0, 02	${ }^{2} 0093$	${ }^{108862}$	${ }^{3} 0695$
38	Darchalag-0	180.488	120.3x4	${ }^{1500235}$	${ }^{129} 0.657$	W5 1528	${ }^{120} 0.362$			
40	Dermaloc-1	${ }^{150} 0528$	${ }^{1050} 0 \times 05$	${ }^{150} 0268$						
41	Esmaxtec-2	${ }^{150} 0.503$	${ }^{61} 0.378$	${ }^{182} 8.244$						
42	Demaxisos ${ }^{-3}$		${ }^{1515} 1.362$	${ }^{52} 0.231$		${ }^{313}{ }^{10536}$	${ }^{2} 0.361$			
43	Datustric-4	${ }^{15 \times 1} 0^{4} 4812$	${ }^{1850} 9360$	[150.230	\$1.657	${ }^{13615 / 526}$	${ }^{18} 0235$			
48.	DEmintic-5	${ }^{2} 0.091$	${ }^{68} 0.045$	T0.J29	20.156	${ }^{50} 0.096$	${ }^{2} 0065$			
45.	Dermalec-b	${ }^{10} 0.54$	${ }^{51} 0.028$	${ }^{46} 0.015$	${ }^{2} 0.105$	$3_{0,06 \%}$	${ }^{3} 0.035$	${ }^{8} 0.918$	${ }^{2} 0.856$	30 6×2
46	Eyerabll	${ }^{8} 0 \times 192$	70,047	${ }^{0} 0.0128$	${ }^{3} \times 170$	${ }^{5} 1100$	${ }^{3} 0060$			
47	exeralit	ए0.052	${ }^{2} 0,023$		${ }^{0} 0.128$	${ }^{3} 0.074$	${ }^{2} 0.033$			
48	E EERAT2	${ }^{*} 0.053$	उप0.025	${ }^{3} 0.011$	${ }^{2} 0.119$	20.076	${ }^{2} 0.041$			
49	EYEESA-3	0_{06088}	ग0,0.8	${ }^{18} 0.003$	${ }^{20} 0,098$	${ }^{2} 0.089$	20.054	${ }^{18} 6399$	${ }^{3} 0.885$	7 2248
50	ExSomeror	${ }^{1810812}$	${ }^{1850.609}$	${ }^{185} 0$ 0,484	\% 0.90	${ }^{57} 0783$	${ }^{312} 0.619$			
54	Eezpha-1	1×0.622	${ }^{1080} 0.480$	18.3035						
52	Extcosez	${ }^{100} 0294$	${ }^{127} 0.490$	${ }^{1240,338}$						
53.	ExCbea-2	${ }^{142} 0389$	${ }^{1} 10326$	${ }^{2040160}$	${ }^{220} 0.543$	1200404	${ }^{36} 0264$			
56	Scerk-1	${ }^{188} 80.369$	${ }^{1 \times 40.297}$	${ }^{150} 6233$	120.54\%	${ }^{350400}$	${ }^{1 \times 20898}$			
55	Sunpel	${ }^{183} 0307$	${ }^{150} 0.238$	${ }^{1080.179}$	${ }^{12 \times 0.537}$	${ }^{220} 0448$	${ }^{2 \times 10352}$			
56	GCatmen-9									
$5{ }^{5}$	sornits 1	${ }^{150.408}$	${ }^{150} 0.248$	${ }^{185} 0.136$	${ }^{218} 80453$	${ }^{150} 0131 / 2$	${ }^{29} 0191$			
68	G0n土Lus-2	${ }^{128} 019010$	1140,108	${ }^{166} 0.1051$	${ }^{\text {520 }} 16.268$	${ }^{91} 1.170$	${ }^{20} 0,093$			
59	sorntas	${ }^{1250326}$	${ }^{12} \times 2.1500$	${ }^{12+0,074}$	[10.0.434	${ }^{10} \mathrm{~m} / 247$	${ }^{18} 0751$			
60	Remana-e	P60766	${ }^{182} 0.632$	${ }^{1850.458}$						
51	HEK-1/	${ }^{32} 0174$	${ }^{3100000}$	${ }^{35} 0.040$	${ }^{8} 0.158$	${ }^{4.0} 103$	${ }^{27} 0.061$			
42	Erk-1	80.21	${ }^{93} 80.067$	${ }^{50} 0.1392$						
63	HES 2	${ }^{6} 0.721$	${ }^{2} 20,067$	0.0 .156						
31	Hik 3	\%0.105	${ }^{8 \times 0,060}$	${ }^{380,930}$	${ }^{510,15}$	\% 0.105	80,061			
65	HIK-4	(tor 101	${ }^{80} 0.056$	${ }^{38} 0.029$	${ }^{50.153}$	${ }^{20} 0.101$	${ }^{2} 0.059$			
66	Fiks ${ }^{\text {che }}$	${ }^{2} 0 \times 45$	${ }^{23} 0.002$	${ }^{29} 0.011$	${ }^{4} 8.087$	${ }^{10} 0.048$	${ }^{15} 0.028$	${ }^{7} 8989$	${ }^{3} \times 194$	${ }^{320662}$
37	6is-6	${ }^{38} 0,050$	${ }^{240.022}$	${ }^{28} 0.011$	${ }^{52} 8088$	${ }^{18} 0052$	${ }^{16} 0.029$	32.000	${ }^{82} 0.98 \%$	${ }^{11} 0645$
68	DEEMLS-0	${ }^{10,114}$	${ }^{50} 0.012$	${ }^{31} 0.0129$	${ }^{*} 8249$	${ }^{3} 0159$	${ }^{3} 0.095$			
69	COEMLS-1	Woust	${ }^{30} 0.031$	${ }^{30} 0.018$						
80	10Eda-3	\$2,084	${ }^{5} 50.032$	560.019						
π	meanix ${ }^{3}$	${ }^{3} 0.250$	${ }^{3200.024}$	${ }^{30} 8.019$	${ }^{3} 0165$	\$20079	${ }^{4} 80$ 50]			
72	Tomath ${ }^{\text {a }}$	19,040	${ }^{3} 0,024$	${ }^{42} 0.014$	\% 6118	450.079	${ }^{0} 0.050$	${ }^{10.989}$	ए0962	\% 0.95

Table 19: Threshold-based accuracy. Values are $\operatorname{PNIR}(N, T, L)$ with $N=1.6$ million with thresholds set to produce $F P I R=0.001$, 0.01 , and 0.1 in non-mate searches. Columns $3-5$ apply to FRVT-2018 mugshots: Columus 6-8 show the corresponding FNIR values for webcam images searched against the FRVI-2018 magshot gallery. Finally, the three rightmost columns show FNIR for profile view images searched against the FRVT-2018 frontal gallery. Throaghout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

2019/09/11	FNIR ${ }^{(N, R, T}$, $=$	False neg. identification tale	$\mathrm{N}=$ Num, enrolled subjects	T = Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
17:24:52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined		$\mathrm{T}>0 \rightarrow$ Identification

		DATSSET：ERVT 2018 MUOSHOTS						DATASET：PROMLE PROEES		
＊		CR $=0.001$	FRPIT $=0.012$	$5 \mathrm{FPR}=01$	KFFN＝0．001	Fla $=19$		FPTR＝0．：010	FPIR $=6.01$	Fere $=0.7$
73	tuearta－5	${ }^{20.047}$	${ }^{56} 0,028$	${ }^{40.017}$	＂0130	－0．11／	${ }^{60} 0805$	${ }^{120.974}$	＂0963	${ }^{2} \times 1960$
（7）	т3ヶ4i－6	${ }^{6.0 .046}$	${ }^{2 \times 0} 0.028$	＂0，0\％8	${ }^{1} 0,286$	\％0161	ए． 108			
75	Texcys 0	${ }^{136.734}$	एप 0.608	${ }^{38} 80.457$	${ }^{15} 0.872$	T60．79	${ }^{15} 0_{0 / 35}$			
76	macus 2	${ }^{150} 0.751$	ए4\％ 3.566	${ }^{17} 9.377$	19\％ 0.81%	${ }^{39} 0.45$	${ }^{172} 98260$			
0	gsacus－3	${ }^{130} 0808$	${ }^{185} 0,670$	${ }^{38} 0.512$	T60948	${ }^{150} 0809$	${ }^{129} 0.567$			
78	arconea	${ }^{1870,313}$	${ }^{194} 0,2 \mathrm{MI}$	${ }^{3+8.107}$	${ }^{15} 0420$	${ }^{180.3049}$	7 01919			
79	acoobe 1	${ }^{1 \mathrm{H}_{0}} \mathbf{0} 214$	${ }^{10} 6.14$	${ }^{150} 0.066$	＊0．296	${ }^{4} 0198$	W0．120			
80	INCOLE 2	0×0.186	${ }^{150} 0.102$	${ }^{30} 0.016$	${ }^{20} 0.26$	${ }^{1 / 20176}$	\％ 0100			
82	INCODE－${ }^{\text {a }}$	${ }^{150} 0.100$	${ }^{2} 040.089 \%$	${ }^{8} 0.038$	${ }^{0} 0264$	＂0104	20085			
52	innovamricsea	${ }^{19 \times 20.255}$	${ }^{148} 8.165$	${ }^{150.089}$	${ }^{10} 0021$	${ }^{12} \mathbf{2} \mathbf{0} 2.25$	${ }^{112} 0$			
183	invovarkes－1	${ }^{150} 8255$	${ }^{3} 0.165$	${ }^{738} 8.089$						
84	InNOYatacs－2	${ }^{120} 0.2337$	${ }^{142} 0.142$	${ }^{13} 8.009$	${ }^{12} 0310$	${ }^{4 \times 209}$	${ }^{10} 0.126$			
85	InNovatracs－3，	Trox24	${ }^{120.134}$	${ }^{32} 0.0888$	＂629？	T2．203	\＄0．116			
86	Invovatice－4	${ }^{10} 0.134$	80．076	${ }^{9} 0.0 .35$	${ }^{3} \mathrm{C} / 282$	N149	\％003s	1 Y 0.9 m	${ }^{199966}$	${ }^{20.945}$
\＄9	5xsibucher	720．091	${ }^{59} 0.049$	\％0，023	3^{6173}	श0．119	00.065			
89	Eystems－1	${ }^{29} 0.090$	${ }^{56} 0.047$	P0．03						
88	Exsthme 3	${ }^{32} 0.1881$	${ }^{53} 0.0135$	${ }^{50.015}$	${ }^{82} \times 126$	${ }^{45} 0,080$	${ }^{4} 0.046$			
80	20187mas ${ }^{3}$	56，ilic2	${ }^{51} 0.027$	30.012	${ }^{3} 0,158$	${ }^{3} 00068$	${ }^{3} 0.039$	\＄1，000	$3_{0} 0$	＂0913
21	$200 \mathrm{KM} \mathrm{Na}^{\text {a }}$	＂0．046	${ }^{510.027}$	90.017	${ }^{31} \mathrm{C} 112$	${ }^{50.082}$	50.057			
92	Usokimanes	\＄${ }_{0.0 .147}$	${ }^{39} 0.017$	\＄0，006	${ }^{2} 0105$	$\$_{0,075}$	${ }^{3} 0.052$	${ }^{36}$	${ }^{4} 0978$	${ }^{3} 097$
（3）	mexem－9	\＄0．109	ग0． 053	70.025	${ }^{3} 0116$	${ }^{30} 0.067$	${ }^{3} 0.034$			
34	Niccyel	${ }^{43} 1.075$	${ }^{50} 0.139$	${ }^{60} 0,02$	${ }^{3} \mathbf{3} \mathbf{1 6 5 7}$	20061	${ }^{20033}$			
35	Natayios	5 0,180	${ }^{510} 10.139$	${ }^{360.022}$	${ }^{2200696}$	30.059	${ }^{50.033}$	${ }^{20} 0.9 \% 7$	40.69	${ }^{0.429}$
36		${ }^{19} 1933$	${ }^{15 \%} \times 8867$	190.749	${ }^{18} 8085$	${ }^{29} 0958$	${ }^{150} 0.877$			
\％	Nreporocus－1	${ }^{18} 8983$	प5． 6.867	${ }^{510} 0.243$						
38	Whicrapocus 2	${ }^{\text {Mr }} 03334$	${ }^{14} 40.870$	${ }^{756} 3.358$						
58	micreforus 3	${ }^{1750391}$	${ }^{79} 10.8866$	${ }^{19} 93848$	${ }^{78} \times 898$	${ }^{135054}$	${ }^{12} 80.876$			
100	ancropocus－4	100，998	W0099	${ }^{180} 0 \times 34$	${ }^{3 \times 10985}$	120944	${ }^{180} 0862$			
101	incrorocus－5	${ }^{19} 0336$	${ }^{3} 1736$	${ }^{180} 0.588$	${ }^{310928}$	${ }^{3 \times 2} 865$	${ }^{192} 0748$			
402	inctiorocus－6	${ }^{\text {ए3 }} 0 \times 978$	${ }^{129} 6.963$	TP0，64	${ }^{120,923}$	${ }^{129} 0858$	${ }^{\text {x }}$ atasa			
100	Mickosomion	${ }^{20,044}$	${ }^{220} 0.022$	20，Cl0	${ }^{3} 0115$	${ }^{3} 0.071$	${ }^{3} 0040$			
104	nuckosere－1	${ }^{3} 3^{3} 0045$	${ }^{\text {N0，}} 0.42$	${ }^{3} 0.011$						
108	matco．osary－2	40.050	${ }^{36} 0.026$	\＄0．012						
196	Timetosemen	${ }^{16} 91.130$	${ }^{6} .014$	${ }^{12} 0.006$	＂${ }^{\text {cousi }}$	ए0056	${ }^{21} 0.028$			
107	Niccrosorm－4	${ }^{13} 0.0129$	${ }^{15} 8.013$	W0．005	${ }^{1300887}$	${ }^{150053}$	${ }^{18} 0.1026$			
308	nucrosber． 5	${ }^{2} 0.028$	18.012	70.005	10.01070	30041	${ }^{0} 0.021$	80388	H289	Mas
108	3imarosefi－s	${ }^{50.014}$	70，008	${ }^{3} 0,004$	${ }^{3} 0.037$	${ }^{50,024}$	${ }^{4} 0016$	0，203	4，48	8.103
110	MEC．0	8.0 .182	T6，［4，	80．0．29	${ }^{52} 0140$	${ }^{50,093}$	${ }^{6} 0159$			
111	NEC． 1	${ }^{7} 0.108$	${ }^{87} 0.063$	प20．635	${ }^{3} 019$	${ }^{2} 0138$	Wh0983			
142	NEC2	50105	${ }^{4} 0.004$	${ }^{10.009}$	20．620	Eexus	${ }^{1}$ D，010			
113	NECCO	${ }^{10.004}$	4064	${ }^{3} \times 108$	${ }^{2} 1015$	${ }^{1} 0.013$	209\％	${ }^{3} 0.664$	${ }^{5} 04 \times 9$	${ }^{6} 0.349$
	NEUROTECHWOLOS ${ }^{\text {a }}$	120,095	${ }^{120} 6.196$	${ }^{3+0.108}$	${ }^{150,465}$	${ }^{19} 0,317$	${ }^{120} 0.196$			
115	FEUROTE HNOLOCSH－1	${ }^{130} 0,298$	${ }^{1020} 0.195$	${ }^{12}+0,105$						
126	MEMURECHNOLOS＊－2	${ }^{12202029}$	${ }^{19} 10.195$	${ }^{10} 0.105$						
418	MEurotechinollegea	${ }^{122} 6.655$	${ }^{120} 0.101$	${ }^{3} 0,068$	${ }^{20} 6250$	${ }^{81} 8164$	${ }^{3} 0088$			
118	MEYBOTE：HMOLETO－4	${ }^{5 \times 1066}$	\％ 8.050	${ }^{40.014}$	${ }^{3} 0117$	${ }^{3} \times 0073$	${ }^{2} 0.040$			
1598		ए0．056	$3^{3} 0.185$	${ }^{3} 0.012$	40130	${ }^{30} 6084$	स0，42	${ }^{20596}$	＊0，982	${ }^{5}$
122	NEURATECHNOLOSX	${ }^{12314555}$	${ }^{12 \times 1.124}$	W0，01	${ }^{150} 0418$	${ }^{19} 0.216$	80.103			
121	NRMLAMD－2	${ }^{120} 0.4415$	40， 0,26	${ }^{2 \times 0.157}$	${ }^{30} 0.466$	${ }^{120} 0.335$	${ }^{120} 01213$			
122	noelis－1	12000	1970．992	${ }^{180} 0.419$	1391，000	${ }^{39} 1.0000$	${ }^{1020} 1000$			
123	Nobeis： 2	${ }^{56} 6397$	${ }^{178} \mathbf{8} .490$	${ }^{260} 0.309$	उ61．000	${ }^{160} 1.000$	${ }^{1660.565}$	331000	$\sqrt[3]{1,000}$	${ }^{3} 1.000$
124	NTECHCAS－0	${ }^{640.083}$	${ }^{120} 0047$	\％ 0,023	50152	${ }^{80105}$	${ }^{62} 0,061$			
125	MTEEHLAS 1	${ }^{720102}$	${ }^{58} 0.056$	T0．027						
126		${ }^{5} 0.0056$	50.036	＋0．0．5	\％ 6118	${ }^{2} 0.075$	${ }^{4} 0043$			
－127	NTECHCSE－1	${ }^{21} 0.043$	（1）． 224	${ }^{3} 2.012$	＊0105	\％ 0.065	${ }^{2} 0036$			
128	NTECHLSE 5	$2_{60,145}$	${ }^{\text {Wene．044 }}$	ए0．012	$3 \mathrm{kr18}$	${ }^{3} 0,063$	「9， 134			
120	TSECHLAB－大	${ }^{18} 0.039$	${ }^{30} 0.022$	${ }^{3} \mathrm{O}, 010$	${ }^{5} 0.094$	${ }^{10} 0.059$	${ }^{100132}$	${ }^{30.566}$	${ }^{9} 0443$	${ }^{20.317}$
	CWANTAFOET－1	${ }^{100} 0.640$	${ }^{1 \times 80.494}$	${ }^{310.3355}$						
131	Tammenk－0．	${ }^{15} 10,219$	190．12］	180.076	${ }^{10} 0391$	${ }^{16} 0.0 .291$	${ }^{1 \times 2} 0.195$			
132	Ramicoisk ${ }^{\text {a }}$	${ }^{20} 6.168$	${ }^{1080} 0.68$	\＄0．043						
133	Ramkone 2	${ }^{5} 0.120$	${ }^{6} 6.0 \mathrm{~m} 3$	${ }^{4 / 0,012}$	${ }^{8} 0.261$	＊0，190	${ }^{w} 0.126$			
194	RANKOME－3	3^{10120}	${ }^{380,073}$	${ }^{50,042}$	${ }^{18} 0.255$	${ }^{2} 0.187$	＂0，122			
136	Rankomb－3	${ }^{12} 01195$	${ }^{10} 1{ }_{\text {c } 126}$	${ }^{36} 0,0 / 6$	${ }^{156}{ }^{6} 426$	${ }^{12} 0,3,24$	${ }^{138} 0.221$			
136	3enmonk－5	${ }^{10} 0.862$	50．036	${ }^{58} 0,021$	${ }^{2} 017 / 3$	${ }^{6} 8.119$	${ }^{200054}$	${ }^{20588}$	${ }^{2 / 09 \%}$	${ }^{32} 0.988$
13	Realumethokksm	1900.236	120．140	1280．0．07	140319	760,209	${ }^{158} 0129$			
138	R6，mintworkg－1	${ }^{118} 0.236$	${ }^{150} 0.140$	${ }^{17} 0.0 .070$	${ }^{100} 0.319$	${ }^{500.209}$	${ }^{1080} 0129$			
739	REALSETHOMSS－2	151.234	180139	${ }^{280} 0.077$	${ }^{120} 0315$	${ }^{2100209}$	${ }^{104} 0129$			
140	SELMAELAM－	340.130	${ }^{36} 0.092$	\％0，025	${ }^{8,203}$	${ }^{50} 0.123$	${ }^{600064}$			
141	KEITARKAT－2	9.126	${ }^{540.061}$	${ }^{76} 50.64$	${ }^{3} 010.96$	\％0，122	\％0363	50880	17095	${ }^{18} 0.9 \mathrm{Fg}$
142	Sensemine－0	${ }^{9} 0.1828$	${ }^{10} 0.012$	${ }^{14} 0.008$	${ }^{8} 0.0638$	${ }^{30} 890$	${ }^{3} 0.025$	${ }^{129} 1,000$	${ }^{3} \mathrm{ag} /{ }^{\text {a }}$	${ }^{16}$ 0， 84 LI
143	Smissarnae－1	11.0025	${ }^{150.012}$	${ }^{15} 0.007$	${ }^{9} 0.064$	${ }^{10} 0041$	${ }^{31} 0.025$			
144	SHMANALO	${ }^{1520474}$	${ }^{360} 0.370$	${ }^{150} 0.259$	150.621	${ }^{39} 0.507$	${ }^{13} 03375$			

Table 20：Threshold－based accuracy．Values are $E N T R(N, T, L)$ with $N=1.6$ million with thresholds set to produce FPIR $=0.001$ ， 0.01 ，and 0.1 in non－mate searches．Columns $3-5$ apply to ERVI－2018 mugshots：Columns $6-8$ show the corresponding FNIR values for webcam images searched against the FRVT－2018 mugshot gallery．Finally，the three rightmost columns show FNIR for profile view inages searched against the FRVT－2018 frontal gallery．Throughout blue superscripts indicate the rank of the algorithm for that column，Caution：The Power－low models are mostly intended to draw attention to the kind of behavior，not as a model to be used for prediction．

2019／09／11	FNIR（N，R，T）$=$	False neg．identification rate	$\mathrm{N}=$ Num．enrolled subjects	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
17：24：52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos．identification tate	$\mathrm{R}=$ Num．candidates examined		$\mathrm{T}>\mathrm{O} \rightarrow$ Identification

		DAMASET: FFN 20048 WUCUSNOTS			CNTASES WEECAM PRORES			DAFKBET: PROTLLE [ROBES		
\#	ALSOETHM	EPIT $=0.001$	(F) $\mathrm{F}=0.01$	FPriol 0.1	ERLI-0.001	5P1]=0.01	FPIR $=0.1$	FFIT $=0.001$	FPt $=$ - ${ }^{\text {a }}$	
145	SHMes $\times \mathrm{N}-1$	${ }^{10} 0532$	${ }^{16} 0.406$	${ }^{198} 0.274$						
146	SExamas-2	${ }^{279} 0.700$	${ }^{12} 0.582$	${ }^{180} 0.424$						
147	SHADAN-3	${ }^{131} 0.4533$	${ }^{1160} 0.348$	${ }^{\text {T5 }} 0.825$	${ }^{79} 9.597$	${ }^{71}$ (1472	120317			
113	SHAMANT-4	1690.616	${ }^{171} 0.490$	${ }^{30} 0.342$	1500.754	${ }^{32} 0.639$	${ }^{13} 0.2880$			
149	SHAMADM	${ }^{3} 0143$	${ }^{120} 0.095$	${ }^{19} 0.060$	${ }^{516,237}$	${ }^{8} 0_{0.158}$	${ }^{5010208}$	20,552	150.835	${ }^{2} 0,905$
150	SHablars-\%	T01-1	190,024	${ }^{18} 0.060$	${ }^{66} 0240$	${ }^{2} 0.169$	${ }^{4} \mathrm{ajor}$			
151	S147-4	/0,0\%1	${ }^{\infty} 0.042$	${ }^{50} 0.022$	${ }^{3} 0.108$	\% 0.064	20.025			
152	Scasel	${ }^{2} 00020$	${ }^{6} 0002$	${ }^{5} 0.005$	${ }^{10} 0,305$	${ }^{230} 0.548$	120.837			
153	3193-2	${ }^{20.024}$	70.002	${ }^{3} 0.005$	$16.0 .4 \times 8$	${ }^{15} 0.450$	140:551.			
154	SMMEART-9	${ }^{160} 0.620$	${ }^{1010} 0.486$	170.322						
165	Smilart 1	${ }^{1910.641}$	150.505	${ }^{150.342}$						
154	SMMLART-2	${ }^{167} 0.629$	${ }^{171} 0.492$	${ }^{177} 0.325$						
157	SMILART-4	${ }^{19109688}$	180.965	${ }^{188} 0.964$	${ }^{138} 0.976$	${ }^{38} 80.973$	${ }^{15} 0853$			
158	SMLLART-5									
15%	Stivests a	${ }^{1050} 0.554$	${ }^{168} 0.378$	T6,0,213	${ }^{158} 0.734$	${ }^{191} 0.5 \times 3$	${ }^{1910} 0.431$			
160.	Singests--	${ }^{10} 9058$	${ }^{18} 90.444$	${ }^{10} 00.295$	${ }^{122} 0.646$	${ }^{13} 0.544$	${ }^{13} 03872$			
161	TECIANO	${ }^{17} 0.268$	${ }^{017} 0.714$	${ }^{43} 0.154$	430.381	${ }^{1610.227}$	1180132			
162	TEYSNA	780.0.83	पश1. 114	${ }^{172} 0.054$						
103	TEv1si-2	170.202	${ }^{188} 0.114$	${ }^{112} 0.054$						
164	TEWAN-3	${ }^{106} 0180$	${ }^{12} 00.028$	"0.044	${ }^{58} 0.298$	${ }^{310.198}$	${ }^{50} 0.112$			
155	TEULAN-4	${ }^{*} 0120$	${ }^{4} 00056$	${ }^{3} 0,081$	${ }^{7} 0.178$	${ }^{0} 0.115$	${ }^{20} 0065$			
16\%	Ttenosk-5	${ }^{8} 0.080$	70.0x	${ }^{20} 0,022$		${ }^{20,089}$	${ }^{2} \mathrm{a}(4)$	20,910	${ }^{2} 0651$	\$0,483
16^{7}	T]G8R-0.	${ }^{13} 0332$	${ }^{150} 0.253$	${ }^{10} 0,142$	${ }^{2} 20,500$	$\mathrm{NF}_{0,366}$	1210211			
168	ThGES-1				${ }^{22} 68581$	${ }^{132} 0.487$	${ }^{130} 0356$			
16	Theore-2	macse	${ }^{4} 0.042$	${ }^{56} 0.018$	${ }^{5} 20.158$	${ }^{36} 0.095$	0.0045	${ }^{3} 0.598$	${ }^{50} 0.927$	${ }^{2} 0.503$
170	widere-3	"008\%	"a00	$55^{0,018}$	${ }^{3} 015$	${ }^{5} 0,095$	W0M8			
177	YONOMTEANS-Q	w0077	\%0.091	\%0.019	${ }^{320112}$	${ }^{320.0 .09}$	${ }^{3} 00038$			
172	Tonstatisens-4	एa0ks	${ }^{4} 0.035$	* 0.016°	25.101	${ }^{4} 0.062$	ब00.03			
173	TOSHID.- ${ }^{\text {() }}$	${ }^{580.065}$	"0,029	${ }^{3} 0.013$	${ }^{380118}$	${ }^{350074}$	ए0r42	${ }^{2} 0.398$	20971	0.899
174	Tustime-1	${ }^{\sim} 00062$	20.0.2	${ }^{2} 0.010$	${ }^{18} 0.1092$	${ }^{16} 0.058$	${ }^{180.032}$			
175	92-6	120097	${ }^{150} 0.828$	${ }^{7} 1{ }^{2} 0.568$	${ }^{18} \mathrm{O}, 945$	${ }^{185} 08 \times 1$	1200725			
175	ve-1	${ }^{150} 9264$	${ }^{180.118}$	${ }^{170} 0.059$	${ }^{54} 0.281$	${ }^{3}$	${ }^{310106}$			
18 T	grellani Spuat icns-a	${ }^{120} 0503$	${ }^{150} 0,304$	${ }^{123} 0.247$	170.65	${ }^{31} 00.557$	${ }^{10} 0 \times 38$			
188	Vichantseetrions-1	120.637	${ }^{150} 0.502$	${ }^{17} 0.348$						
179	TETLMNTSUCOTHON-2	${ }^{18} 08876$	12×0.731	180.489						
180	VEniadtsciut lowh 3	${ }^{250.410}$	${ }^{151} 0.283$	${ }_{19} 0.163$	${ }^{1300.650}$	${ }^{379} 0.526$	${ }^{181} 0586$			
181	MOHLNESQ2\%TISH \&	The 0,560	${ }^{150} 0.42 .4$	${ }^{750} 0268$	T94.0.817	20900,79	Tक50.523			
182	MGELANTSOCHT TONE-5	${ }^{1250} 0.433$	${ }^{2 \times 0,045}$	${ }^{3100023}$						
183	MICILANTSOUTIONE. 6	${ }^{180} 0.426$	${ }^{50,0,48}$	${ }^{23} 0.023$						
184	YTSTOM ABS-6	${ }^{6} 00051$	\%0.026	${ }^{80 ; 013}$	${ }^{39} 0.187$	${ }^{10} 0,091$	${ }^{3} 00051$			
185	YisIom2aes-4	\%0060	${ }^{*} 0.0 .026$	${ }^{3} 0,010$	${ }^{82} 8.159$	${ }^{37} 0.097$	40.045			
188	VISIOM2.4ES-5	Na, ${ }^{\text {a }}$	${ }^{2} 0.022$	${ }^{15} 0.008$	${ }^{2} \times 1427$	${ }^{*} 0.0887$	"0041			
18 r	vistoniabs-6	${ }^{30} 023$	${ }^{10012}$	${ }^{150.005}$	${ }^{16} 0.950$	${ }^{13} 0.051$	${ }^{2} 00025$			
188	HSICMLABS-?	${ }^{10,028}$	120.012	${ }^{2} 0,005$	${ }^{150.090}$	${ }^{12} 0,0.51$	${ }^{40025}$	${ }^{3} 0,461$	${ }^{2} \times 382$	${ }^{3} 9198$
189	socord-e	${ }^{122} 0399$	${ }^{120} 0.116$	${ }^{12} 0.002$	${ }^{20.2855}$	${ }^{2} 20.181$	${ }^{10108}$			
190	sccorp-1	130.258	${ }^{12} 0.116$	${ }^{13} 0.062$						
191	vacamer-2	${ }^{13} 9366$	${ }^{189} 90.107$	${ }^{1650.057}$						
192	wocord-3	${ }^{1} 01126$	${ }^{3} 00050$	${ }^{3} 0.020$	${ }^{3} 0.15$	${ }^{13} 0.093$	50048			
158	Nocord-4	1410378	${ }^{86} 0.054$	${ }^{2} 0.021$	${ }^{30.173}$	${ }^{30} 0.028$	${ }^{250.046}$			
192	yocogro-s.	10.0170	${ }_{6}^{6} 0.0 \leq 6$	\%0.019	${ }^{3} 0.181$	${ }^{5} 0.080$	${ }^{12} 0043$	50,0.932	${ }^{13} 08.829$	${ }^{3} 0.787$
195	MOCORD-6	${ }^{18} 1.000$	${ }^{36} 1.000$	38.0000	2010 1.000	${ }^{29} 1.000$	${ }^{20} 1.000$			
156	XSFACAC-0	116,390	${ }^{120} 0.2098$	${ }^{2}$	${ }^{15 \times 10974}$	इ170.2.276	${ }^{172} 0.146$			
197	YSEEENG-1	${ }^{150} 0348$	${ }^{132} 0.208$		${ }^{151} 0.808$	${ }^{773} 0.8569$	${ }^{10} 0.144$			
198	Peru-a	\% 0,050	${ }^{39} 0.025$	${ }^{3} 0.012$	${ }^{100000}$	${ }^{17} 0.054$	${ }^{730030}$			
139	YTTU. 1	"0047	\%0.0.3	T0.011						
200	y 7 Te-	${ }^{7} 0.020$	${ }^{8} 0.011$	${ }^{19} 0.006$	${ }^{5} 0.089$	${ }^{6} 0.028$	${ }^{5} 0016$			
20.	creu-3	${ }^{8} 0.021$	${ }^{7} 0.01$	${ }^{15} 0.00 \%$	0.052	${ }^{7} 0.033$	${ }^{2} 0021$			
208	xeru-	${ }^{3} 0012$	80.00%	${ }^{4} 0.004$	${ }^{3} 0.025$	${ }^{3} 0.017$	30021	${ }^{8} 0.502$	${ }^{110.975}$	${ }^{21} 0,845$
203	seru-5	${ }^{4} 0983$	Tame	${ }^{3} 0005$	${ }^{+0.038}$	${ }^{4} 0.0 .23$	${ }^{0} 0.019$			

Table 21: Threshold-based accuracy. Values are FNIR (N, T, L) with $N=1.6$ million with thresholds set to produce FPIR $=0.001$, 0.01 , and 0.1 in non-mate searches. Columns $3-5$ apply to FRVI-2018 mugshots: Columns $6-8$ show the corresponding FNIR values for webcam images searched against the FRVT-2018 mugshot gallery. Finally, the three rightmost columns show FNIR for profile View images searched against the FRVT-2018 frontal gallery. Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of behavior, not as a model to be used for prediction.

2019/09/11	FNIR ${ }^{\text {N }}$, R, T) $=$	False neg. identification tale	$\mathrm{N}=$ Num. enmolled subject	T = Threshald	$\mathrm{T}=0 \rightarrow$ Investigation
17.24:52	$\operatorname{FPIR}(\mathbb{N}, \mathrm{T})=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined		T>0 \rightarrow Identification

		Hidxesticationmole				IDENTIPECSTISN MODE				FACLurato extrhat			
										EEATORSS			
\%		$\begin{aligned} & \text { M } 16 \mathrm{LK} \\ & \text { eryt-18 } \end{aligned}$	$\begin{aligned} & \mathrm{N}=1 \mathrm{MM} \\ & \text { wsecam } \end{aligned}$	$\mathrm{N}=1.6 \mathrm{~m}$ PEQEILE	$\begin{aligned} & \begin{array}{c} \text { N=1.1M } \\ \text { wiLD } \end{array} \end{aligned}$	$\begin{aligned} & x=1 \times 1 \mathrm{kin} \\ & 5 \times x-28 \end{aligned}$	$\begin{gathered} \mathrm{N}=1 . \mathrm{BM} \\ \text { wев } \end{gathered}$	$\begin{aligned} & \mathrm{N}=1 . \mathrm{MN} \\ & \text { erong } \end{aligned}$	$\begin{aligned} & N=1 / M_{4} \\ & \text { wius } \end{aligned}$	$\begin{aligned} & k=1.8 \mathrm{~L} \pi \\ & \mathrm{Fk} \pi-18 \end{aligned}$		$\begin{aligned} & \mathrm{N}=1 . \mathrm{KM} \\ & \mathrm{~N} \text { ROFILS } \end{aligned}$	$\begin{aligned} & \mathrm{N}=1 \mathrm{~N} M \\ & \text { wis } \end{aligned}$
1234567	30via 30INE 1 3CTV:2 30Di-3 sary -4 3aryt 5 3QPV-b	${ }^{118} 80.034$	${ }^{310} 0088$		\%0.071	${ }^{180160}$	${ }^{178} 0.302$		${ }^{680} 0.95$	0.0 Sa	0.007		0.013
		${ }^{49} 9.038$			${ }^{3} 0,074$	${ }^{18} 0.160$			${ }^{0000055}$	0.000			0.013
		${ }^{120} 0.040$			${ }^{50} 0.076$	${ }^{150} 0154$			\%6.096	0008			0013
		${ }^{102} 0: 086$	P80206		${ }^{30} 0.094$	${ }^{1 / 20284}$	${ }^{133} 0.497$		${ }^{2} 0,136$	0,002	9.005		Qom
		50,020	"One2			${ }^{150.086}$	${ }^{150} 9.237$			0 n	0.005		
		70020	W0062	80.384	${ }^{3}{ }^{3} 0.052$	${ }^{16} 0005$	${ }^{100} 01234$	40.087	${ }^{4} 0.09$	10002	0.005	Q442	ana
		${ }^{30} 6,0.27$	${ }^{15} 0.0074$		${ }^{*} 0,060$	740.098	${ }^{70} 0_{0,238}$		${ }^{4} 0.072$	0002	0.805		COO_{2}
10	A LCMER $x=0$ A WCHESA-1 ALCHBRA-2 SLCHERAC3	${ }^{3} 0.019$	${ }^{30} 0.487$		"0.092	W0073	\% 1146		ए0.09	ancs	0.014		0030
		${ }^{29} 0987$	100.000			${ }^{19} 8093$	${ }^{10} 1.000$			0006	0.013		
		${ }^{150} 0.097$	${ }^{7 \times 0.166}$		F0.098	W Ca 14	${ }^{188} 0.452$		${ }^{80} 6$	0.00	0.002		6012
		${ }^{22} \times 6.513$	*0,035	${ }^{50} 0.629$	\% 0.065	"¢073	${ }^{38} 0.152$	"8.9\%	*0,067	0.001	0.00	Q126	0.012
12	ANEE-9	${ }^{80} 0.16$	\%0.038	${ }^{40} 0897$	" 120.289	ए0065	ש0.15	\% 0,985		0,000	0.001	0.0817	0007
	ANRE- ${ }^{\text {d }}$	"0.015	*0.038		"00284	${ }^{80.065}$	8.0151			0000	0.001		0.001
14	2hast-d	${ }^{250} 0.0 a^{2}$	${ }^{18} 013138$		${ }^{1250} 0.588$	120.128	${ }^{154} 0.283$		${ }^{1220} \mathrm{CS87}$	0006	0.054		a143
15	shamerit	${ }^{1960.059}$			${ }^{1 \times 10580}$	${ }^{13} 012,27$			${ }^{34} 0.589$	0006			6148
15	rancer 2	${ }^{14} 81,060$				120130				Qung			(143
18	AMARE-3	${ }^{160} 0.033$	ग20,030		${ }^{122} 0.503$	${ }^{10} 00.055$	100, 0,204		स180.505	0,004	0.005		0.014
13	AMSkE-4	150.020				$1{ }^{19,1787}$	${ }^{13} 0.375$			0008	0.005		
19	AVARE-5	${ }^{11}$	${ }^{9}$ 90,065	*0973	\$20.059	${ }^{180} \mathrm{Cogss}$	${ }^{3} 0.1 / 3$	${ }^{3029}$	${ }^{790} 0.503$	00 Cl	0.002	Q189	00 C
20	AWare-5	${ }^{10} 0.072$	${ }^{19} 9128$			${ }^{15010139}$	${ }^{136} 0.283$			0 Ca	conk		
	ArONIS-0	${ }^{190452}$	${ }^{53} 0,685$		${ }^{120} 0400$	${ }^{188} 0.725$	${ }_{12} 4_{0.892}$		${ }^{120} 0.596$	Q, 10	0.031		0068
2	AxONDX-1	${ }^{220,343}$	${ }^{3520527}$		${ }^{47} 0.334$	${ }^{188} 80702$	${ }^{150} 0.845$		${ }^{2205055}$	0010	0.031		0066
22	ARONDS-2	${ }^{1560,343}$	${ }^{13} 0.527$			${ }^{1880} \mathrm{O} 7 \mathrm{OLC}$	${ }^{136} 0.855$			0020	0.031		
22	Camvil	${ }^{173} 0.227$	120.397		${ }^{3} 0.148$	${ }^{1780.549}$	${ }^{141} 0.643$		${ }^{76} 0.156$	a,0.5	0.009		0058
25	CAMNT-2	${ }^{150} 0.129$			"0,130	${ }^{186} 0404$			${ }^{9} 0157$	0005			0058
25	camvi-3	${ }^{510} 0.05$ -	${ }^{18} 0000$		${ }^{80,139}$	${ }^{88} 8.060$	W0,103		76130	0.006	0.013		000×2
26	camyl-4	Tr0.049	70.007	${ }^{18} 0640$	T\% 1.000	${ }^{2} \mathrm{COSt}$	" 110	${ }^{30} 0.994$	${ }^{34} 1.060$	a0m	0.000	0.000	0000
	cemotis	${ }^{1260.067}$	1780.103		${ }^{139} 1.000$	${ }^{3} 00078$	${ }^{501.132}$		${ }^{355} 1.000$	0000	0,000		a,om
29	Cocenciob	${ }^{36} 0.013$	${ }^{82} 0.046$		${ }^{8} 0.093$	50.as	${ }^{62} 0100$		${ }^{2} \times 120$	0000	0.850		0000
	cegent-1	${ }^{20} 0.013$	${ }^{10} 0.04$?			${ }^{5} 0.052$	${ }^{1} 1100$			0000	0.000		
30.	COCENT 2	${ }^{20.006}$	${ }^{3} 0,020$	50,901	20,045	${ }^{150,020}$	${ }^{5} 510,063$	${ }^{20.993}$	${ }^{2} 0.061$	0000	0.000	0000	0000
329	cagent-3	\%0.006	${ }^{3} 0.021$		${ }^{3 \times 0.053}$	${ }^{150018}$	${ }^{2} 0,061$		${ }^{0} 0.063$	0.006	0.000		0000
	cagnitee-1)	${ }^{12} 00.128$	${ }^{2} 0.059$			${ }^{188} 0 \times 89$	${ }^{*} 1.200$			12003	0.002		
33	coscries-1	${ }^{350} 0.014$	${ }^{2} 0034$		${ }^{50} 00.04$	"0055	${ }^{10} 0.135$		${ }^{*} \cos 2$	00 Ca	0.912		0.025
35	coscriec-2	${ }^{32} 0.008$	${ }^{3} 0.025$	\% 2,341	${ }^{30} 0.0565$	${ }^{42} 0.085$	Fo,lat	${ }^{15} 0.847$	${ }^{8} 0.061$	a, 0 ck	0.002	0.524	0022
3	coostrse-3	${ }^{56} 8009$	${ }^{15} 0.025$		${ }^{3} 0.051$	${ }^{*} 0.029$	${ }^{8} 0.1010$		${ }^{2} 6,049$	0004	0.002		0012
35	DAHISAS	ब0.012	\%0,026			${ }^{2} \mathrm{COCA} 4$	*\%.083			0004	0.008		
	DAHUA: 1	『0,009	${ }^{150.024}$	${ }^{14} 0.580$	${ }^{4} 0,038$	${ }^{2} 0.039$	${ }^{20} 0.075$	${ }^{10} 0.86{ }^{2}$	${ }^{0} 0 \cdot \mathrm{Cld} 3$	0002	0.0012	0,446	0001
39	DETMADEG	${ }^{181} 0.131$	${ }^{120} 0,218$		${ }^{18} \times 1.075$	${ }^{19} 03644$	${ }^{155} 0.538$		${ }^{3} 0.80104$	ajue	0.002		0,020
	DERMALOCI	${ }^{159} 0.156$			${ }^{3} 0.089$	${ }^{1050,405}$			${ }^{81} 0.131$	000			0.020
40	DERCAALOG-2	${ }^{15850.138}$			${ }^{60,076}$	${ }^{15150378}$			${ }^{4} 0.105$	a,ace			0020
41	DECMALDOG-3	${ }^{15} 8.128$	${ }^{3 / 80.217}$			${ }^{180} 0362$	${ }^{18} 80.525$			0,002	0.002		
42	DERMALOG-4	${ }^{25} 0.127$	${ }^{131} 9215$		${ }^{3}{ }_{0.066}$	${ }^{15} 03.360$	${ }^{2 \times 1} 0.526$		${ }^{5} 0095$	a,001	0.002		0.013
$\begin{array}{\|l\|} \hline 43 \\ \hline 44 \\ \hline \end{array}$	DEVMARLGG-5	\$0.017	*0.037		${ }^{32} 0.056$	${ }^{46} 0045$	* 10%		80.066	aind	0.002		0.03
$\begin{aligned} & \frac{44}{45} \\ & \hline 45 \\ & \hline \end{aligned}$	demmanje-6	50.10	${ }^{5} \mathrm{O} 0 \mathrm{Ca} 4$	${ }^{30517}$	${ }^{3} 0$	${ }^{50.0298}$		${ }^{9} 18.85$	${ }^{3} 0065$	a0cs	0.0 DE	0181	0024
4	exzeat-0	50.021	${ }^{2} 0.038$			"0.047	${ }^{2} 0.100$			0000	0.000		
4	Evgral-	${ }^{20} 0.006$	50.020		${ }^{12} 88928$	${ }^{7} 00023$	* 0.074		370.927		0.900		0000
4	EYEくAl-2	${ }^{250.006}$	${ }^{5} 0.022$		${ }^{180} 0.302$	${ }^{3} 0005$	41.076		${ }^{312} 03088$	00000	0.000		0005
49	sveral-3	${ }^{15} 0,095$	${ }^{3} 0,019$	${ }^{9} 0154$	20,0,38	"0,018	20.000	${ }^{\circ} \mathrm{P}, 535$	"0.044	0000	0.000	0.cs\%	0.000
	wreveshel	${ }^{130,300}$	${ }^{2} 50.447$		${ }^{32}$ (1.231	${ }^{18} 0.679$	125 0.783		${ }^{18} \times 249$	0001	0.013		0.008
50		ए¢0.198			${ }^{0} 0.072$	${ }^{1+1} 0.480$			${ }^{2} 0.131$	0001			0008
5		${ }^{10} 0.203$			"0.67a	${ }^{12} 20.436$			"013,	0.000			0.005
53		150.022	${ }^{1 \times 10,148}$		\% 0,064	${ }^{150} 0.265$	${ }^{153} \times 194$		${ }^{8} 0.091$	0.001	0,003		0.008
5	clory	T50.130	${ }^{19} 0.320$			${ }^{180} 80.297$	$1 x^{3} 400$			0.021	0.013		
$\frac{54}{58}$	GLORY: 1	${ }^{172} 0.129$	${ }^{39} 0.207$		${ }^{14} 80.315$	${ }^{172} 0.238$	${ }_{180} 0.448$		${ }^{10} 0,353$	0.011	0.013		6.114
$\begin{array}{\|l\|} \hline 56 \\ 58 \\ 58 \\ 59 \\ \hline \end{array}$	carina 0 cortus-1 cormlan-2 cortila-s				${ }^{129} 19994$				${ }^{720} 0.984$	0.007			0008
		${ }^{20} 0.063$	${ }^{10} 0,095$		${ }^{20} 0.05 \%$	${ }^{1680.248}$	15\%.514		${ }^{10} 0.076$	0001	0.001		0007
		${ }^{10} 0$	${ }^{2} 0.044$		${ }^{10} 0.045$	${ }^{19} 0.108$	${ }^{0} 0.170$		${ }^{0} 00.49$	0,001	0.001		0.006
		${ }^{120} 0.038$	${ }^{3} \mathrm{OHPO}$		${ }^{50} 0.069$	${ }^{18} 80.160$	${ }^{20} 024 \%$		${ }^{3} \mathrm{CO} \times 80$	0001	0.001		0007
60	Hemino	${ }^{150} 0275$			${ }^{150} 0,335$	${ }^{152} \mathbf{0} 0.632$			${ }^{120} 014$	0.007			0151
$\begin{aligned} & \hline 92 \\ & 62 \\ & 63 \\ & 54 \end{aligned}$	$\begin{aligned} & \text { HIK-1 } \\ & \text { HIR } 1 \\ & \text { HIK-2 } \\ & \text { HIK-3 } \end{aligned}$	पर0.024	\$0.033		"0.153	"0.070	${ }^{2} 0.108$		${ }^{2} 0.155$	0010	0.004		0027
		${ }^{2} 0.0017$			${ }^{\text {10, }} 0,162$	श			${ }^{220,166}$	a,			0.013
		${ }^{30} 0.017$			${ }^{350} 094$	${ }^{3} 20.067$			${ }^{60103}$	0 OXI			0008
		${ }^{33} 0.014$	30002			${ }^{8} 00060$	${ }^{6} 0108$			0000	0.006		
b	Hil-4	${ }^{9} \mathrm{c}, 014$	${ }^{80} \mathrm{cosz}$ \%		${ }^{3} 5_{0,062}$		${ }^{20} 9.101$		*60/5	0300	0.000		0018
8	Hu-5	${ }^{2} 0,007$	${ }^{50} 0.017$	T0,371		20.022	${ }^{210048}$	${ }^{2} 0.964$		0000	0.050	0000	aman
	Hikek	${ }^{310.007}$	${ }^{150017}$	"0371	${ }^{135}$	\%0022	740,052	${ }^{3} \mathbf{0} 0,997$	${ }^{3 \times 1.000}$	2000	0.010	0000	0005
$\frac{6}{6}$	Lusmike	${ }^{7} 0.011$	\%0,034		${ }^{140} 02.268$	\$0.062	${ }^{20} 0.156$		${ }^{70} 10288$	$\omega_{\text {ance }}$	0.000		0002
¢ 6	उपEMED	${ }^{550,012}$			${ }^{31}(1,157$	${ }^{5}{ }^{5} \mathrm{C}, 032$			${ }^{20} 60205$	ajoce			0.002
\% 81	Dsmia/2	${ }^{2} 0.013$			${ }^{196} 0.198$	${ }^{230} 00^{2} 32$			${ }^{10} 0.242$	0.006			${ }^{0.033}$
72 2 2	JCEmis 3	${ }^{30,010}$	${ }^{5} 0.034$			${ }^{30} 0,024$	420,079			0.000	0,090]		
$\underline{02}$	10enta-4	${ }^{50} 0.0099$	50.092	F0,934	${ }^{\text {a }} 0.051$	${ }^{4} 0.024$	${ }^{12} 00079$	${ }^{15} 0.982$	${ }^{36} 0064$	asco	0.000	0041	aore

Table 22. Miss rates by dataset: At left, rank 1 miss rates relevant to irvestigations; at right, with threshold set to target FPIR $=$ 0.01 for higher volume, low prior, uses. ${ }^{*}$ For the WILD set, FPIR $=0.1$ Yellow indicates most accurate algorithm. Throughout bute superscripts indicate the rank of the algonithm for that columor.

Table 23: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses. For the WILD set, FPIR $=0.1$ Yellow indicates most ancurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.

$2019 / 09 / 11$	FNIR(N, R, T) =	False neg identification rate	$\mathrm{N}=$ Num. enmolled subjects	T = Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
17:24:52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined		$\mathrm{T}>0 \rightarrow$ Identification

						DEENTIMCATIONMDDE				Feglure to bmanct			
		RENKONE MES RATE, RNIR(19, [0,3)								Fegtures			
		$\mathrm{N}=2.6 \mathrm{M}$	$\mathrm{N}=1.6 \mathrm{M}$	$\mathrm{N}=2.6 \mathrm{Na}$	$\mathrm{N}=1 . \mathrm{ly}$	$\mathrm{N}=1.63 \mathrm{C}$	W-1.6M	N/1.6M	$\mathrm{N}=1.2 \mathrm{Me}$	$\mathrm{N}=2.6 \mathrm{~A}$	$N=1 . \mathrm{in}$	$\mathrm{N}=1.6 \mathrm{Ck}$	$\mathrm{x}=2.1 \mathrm{Na}$
\%	AILSORETHM	Priot-18		Promm	sacd	FIPT-18	з mbCM	Prome	M10.	F88T-18	- Eerctur	PROFILE	whes
145	SHAMANM	${ }^{1080} 01 / 2$			${ }^{80.173}$	190.408			\$0.153	0.620			0.043
148	SHMM 4×2	${ }^{18}$ (1)422			${ }^{8} 0.132$	${ }^{-1000.562}$			${ }^{38} 0.201$	0.020			0.013
147	SHAMA4N-3	${ }^{16} 012$	${ }^{19}{ }_{6} \mathrm{CH}_{172}$		${ }^{80109}$	${ }^{1580.348}$	${ }^{131} 0.4 / 23$		${ }^{32} 0,132$	0.020	0.01		0.043
148	SHAMSN-4	${ }^{188} 0224$	${ }^{23} 6313$			${ }^{179} 0.490$	${ }^{132} 0.639$			0.802	0.011		
149	SHAmsN-6	${ }^{12} \times 0042$	${ }^{2} 0.158$	${ }^{2} 0910$		${ }^{23} 00.095$	98168	${ }^{30} 0.95$		0.020	0.011	10.869	
150	SHaman-7	${ }^{120} 042$	${ }^{30} 058$		${ }^{20} 9078$	${ }^{180} 0,094$	उ0169		${ }^{50.079}$	0, 20.9	0,000		0.829
151	5153-4	${ }^{*} 0020$	${ }^{3 \times 0,021}$		${ }^{2} 09073$	${ }^{50} 0,045$	30,04		${ }^{140} 0.850$	0.000	0.000		0.009
152	59597-1	${ }^{30} 0004$	${ }^{196339}$		${ }^{31} 0.040$	8.0009	18,448		${ }^{3} 0.941$	0.000	D. 0.00		a.cas
153	Sist-2	3 O 004	${ }^{16} 0446$			\%0,09	${ }^{120} 0.460$			0.000	0.000		
154	shatakt-8	${ }^{180158}$	${ }^{\text {T }} 13,385$		${ }^{10000}$	790.48\%			${ }^{7 \times 1.000}$	0.009			0.121
155	Smindat 1	150219			14000	-0.506			${ }^{183} 1.000$	0.021			0.006
1矿	SWTDART-2	120186			${ }^{25} 15000$	${ }^{194} 0.492$			[1. 1.090	0.000			0.048
157	Smbakt 4	Whage	1409974		${ }^{18} 80.334$	${ }^{150} 0,968$	${ }^{18} 0.973$		${ }^{80} 0833$	0.011	1.103		0.189
15%	Smucaits 5									0.011	0.18		
15\%	StNesced	${ }^{\text {190, }} 162$	T90361			${ }^{15270,378}$	${ }^{141} 0.858$			0.002	0.009		0.081
150	Sxines 5-3	${ }^{160} 0172$	${ }^{1} 46235$			${ }^{138} 0,4444$	${ }^{1350.534}$			0.06	0,015		a.at
111	TEvism-6	${ }^{10} 101022$	${ }^{3}$ \%,066		${ }^{3} 0.054$	${ }^{17} 6.114$	${ }^{1050.227}$		$4_{0,072}$	0.002	0.005		0.005
162	Textam-1	${ }^{106} 90322$			${ }^{25} 0.062$	${ }^{18} 0.114$			${ }^{5} 0.078$	0.002			0.00%
163	Cevian-2	${ }^{10800022}$			${ }^{0} 0093$	${ }^{45} 6.114$			${ }^{20} 0.118$	0.002			0.008
134	texches	${ }^{2} \times 1017$	${ }^{50.052}$			${ }^{1890.098}$	570198			0.001	0.002		
135	TEYCAN-4	T5013	${ }^{38,039}$		${ }^{3} 0,050$	${ }^{90} 0.086$	${ }^{71,115}$		${ }^{3} 0.063$	0.001	0.002		0.005
186	TEveny -5	ए0009	${ }^{54} 0.128$	${ }^{8} 103 \times 2$		70.847	${ }^{5} 9.098$	20.661		0.01	0.002	0.116	
T87	TMEETM	${ }^{14} 1064$	${ }^{31} 0005$		${ }^{1251,000}$	106.263	${ }^{1801866}$		7205 1.000	0.000	0.000		0.05
168	Enabral		${ }^{1+0} 0351$				${ }^{132} 2.487$			0.000	0.000		
169	TISER-2	\% 000 cs	55^{50129}	${ }^{7} 0.355$		${ }^{152} 0.042$	${ }^{50,095}$	${ }^{180.927}$		0,000	0.000	0.456	
170	THES-3	\%ars	${ }^{40} 0,029$			${ }^{2} 0.0842$	${ }^{40} 0.095$			0.000	0.000		
171	Tonaytases-4	${ }^{5} \times 000$	${ }^{3} 0.142$			${ }^{9} 10.064$	${ }^{3} 0.069$			0,033	0.091		
172	TONCYTTEAN5	${ }^{\text {²0.anjo }}$	${ }^{3} 60.18$		80172	${ }^{0} 0,085$	${ }^{3 / 0.62}$		${ }^{80.134}$	0,009	0.001		0.009
173	Tosesinh-a	\% 6007	*00.22	${ }^{10} 0689$		36002	${ }^{350.074}$	${ }^{2} 0.97$		0.000	0.00	0,170	0.002
174	TCSAmider 1		${ }^{3} 0.122$			${ }^{3} 0.021$	T0.0.54			0.002	0.000		
175	UD/3	${ }^{198}$	${ }^{55} 0.551$		${ }^{\text {T15 }}$ (21217	${ }^{30} 0.888$	${ }^{58} 0.871$		${ }^{170} 0362$	0.01	0.013		0.026
123	Wo-1	${ }^{150} 0080$	${ }^{3} 0005{ }^{\text {a }}$			${ }^{1210118}$	\%40.128			0.08	0000		0.017
1818	VIGJLANTELETCONS-6	TM0125	${ }^{310212}$		\% 70.75	${ }^{780} 0304$	251557		\%0,52	0.000	0.004		0.013
178	VICHAJTSGUMTICNE-1	${ }^{1810} 0204$			* 0.103	W00.502			${ }^{3 \times 1.269}$	0.00			0.009
129	MICicantsolutions 2	${ }^{120} 938$			${ }^{4} 0.064$	${ }^{188} 8.731$			\%0129	0.000			0.003
180		${ }^{18800 / 2}$	${ }^{13} 0.151$		${ }^{2} 0,065$	${ }^{190} 0,283$	${ }^{120} 956$		${ }^{2} 0.131$	0.000	0.001		0.043
181	Miollantsonutions 4	${ }^{18} 0.127$	${ }^{13} 0.244$			${ }^{187} 0.424$	${ }^{1550799}$			0.000	0.001		
182	Wicheastellumions-5	"0012				${ }^{3} 0,045$				0.000	0.001		
183	2ngicastsumiticmet	${ }^{200713}$				${ }^{5} 0.046$				0.000	0.001		
289	nIsonlass-3	${ }^{4} 0009$	\%0.039		$x_{0,051}$	${ }^{3} 0.026$	${ }^{* 0,091}$		${ }^{15} 0,046$	0.002	0.003		0.014
185	HISIONLABSA	${ }^{180} 0004$	${ }^{20,020}$			${ }^{30} 0.025$	50.087			0.001	0.001		
185	M19CNLABS-5	${ }^{320004}$	${ }^{100419}$		${ }^{15} 0.043$	${ }^{3} 0.022$	\% 6 ce7		${ }^{160.0465}$	0.001	0.001		0.006
128		ए006	${ }^{4} 0.015$			${ }^{18} 0.012$	${ }^{3} 0.651$			0.01	0.001		
188	WISIOMLASSA	30008	00.015	${ }^{3} 6130$	100%	${ }^{180,012}$	120,061	30.322	र6525	0.001	0,001	0.051	0.00 I
189	yocorr-9	${ }^{\text {T3, }}$ ata	${ }^{210} 0.065$			12 0.116	${ }^{20,181}$			0.015	0.005		6009
190	vacari-1	120000				749.416				0.05			0.08
191	yocoro- ${ }^{\text {a }}$	${ }^{150} 0038$				"30,07				0.0 .5			0.015
192	vacorios	${ }^{2}$			\% 0.057	${ }^{50,005}$	${ }^{50.083}$		${ }^{31}$	0.01	0.013		20.0%
193	WOCORO- 1	50,040	${ }^{30021}$			${ }^{36} 0.054$	${ }^{10,093}$			0.000	0.000		
194	vocore-5	50009	${ }^{63} 0023$	${ }^{3} 0739$	P004	350,046	$W_{0.080}$	${ }^{13} 0.929$	${ }^{14} 0.045$	0.001	0.099	0.554	0.003
195.	yocont-	${ }^{201000}$	${ }^{261} 2.0009$			${ }^{231} 1000$	${ }^{31000}$			0.001	0.009		
196	YTSHDTG-0	${ }^{1210003}$	${ }^{38} 0060$		${ }^{50.060}$	${ }^{215} 0,209$	${ }^{142} 02,275$		\$6100	0.008	0.005		0.014
197	LISHENC-I	${ }^{190} 0020$	\$0.060		40061	${ }^{1950,2038}$	${ }^{13} 0.249$		${ }^{50.087}$	0.008	0.005		0.014
198	xitu-y	3^{3}	${ }^{20.020}$		${ }^{72005 \%}$	\% ${ }^{0.025}$			${ }^{*} 0.094$	0.003	0.001		0.026
199		${ }^{3} \times 0007$			${ }^{72} 0.085$	${ }^{3} 0,023$			${ }^{50,092}$	9.009			0.026
200	\#150-2	${ }^{31} 00005$	${ }^{4} 0.010$		${ }^{22} 0046$	${ }^{8} 6,011$	60.028		${ }^{*} 0,051$	0.000	0.009		0.000
201	(ruv-3	${ }^{30006}$	${ }^{150.616}$			\% 0.011	${ }^{3} 1003$			0.003	0.001		
202	xtu-4	${ }^{3} \mathrm{a}, 0 \mathrm{ck}$	Tha08	${ }^{3} 0831$	${ }^{7 \times 0.04 \%}$	${ }^{3} 0.000$	3 cmz	${ }^{1}{ }_{0} .375$	${ }^{171.047}$	0.000	0.000	0.000	0.006
2		,	,			-	(,23)				.01		

Table 24: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses. *For the WILD set, $F P I R=0.1$ Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that columm.

2019/09/11	FNTR(N, R, Ty	False neg identification cate	$\mathrm{N}=$ Num. enrolled subjects	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
17:24:52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined		$T>0 \rightarrow$ Identification

WISSES CITSDE RAMK									
DMER(N, T, © DABLEBY		TNYESTGGTVN NODE, $\mathrm{T}=0$ PROPORTTONTATED SEARCHES				BWOPOTTICN KCATED SEARCHES			
		WHHOUT THEMATE		WYTH NO MATE	WHPM-THIASE	WITH THEMATE RELOYM THRESHOU		TE MATE	WWHOUT ALDMATES ARDVE THKSSR Linstrel
			Renk 1	AT RANKT				ABPVE THRESH	
		keesme	CONDOLDATEL	Inetnsoldeated		BELOW THRESHDU aECENT CONSOLIDATED		ONCONSOLDSAECL	
1	STME5	\$ 0.0 .3502	${ }^{43} 0.01,33$	${ }^{4} 0.0133$	${ }^{48} 0.0449$		36.1339	${ }^{5} 0.1339$	${ }^{4} 0.3186$
2	3 deves	${ }^{520.0255}$	${ }^{40} 0.0185$	${ }^{4} 0.072$	${ }^{47} 0,4410$	30,7706	T013345	${ }^{20} 0.1350$	${ }^{4} 0.3160$
3	ACHERA 2	50.0973	"0.015	${ }^{81} 0.0734$	${ }^{3} \mathrm{e} .1876$	${ }^{610.4599}$	100.3736	${ }^{20} 0.4418$	${ }^{60} 0.6820$
4	M $\mathrm{N} \times \mathrm{E}-0$	${ }^{5} 0.0168$	30,0100	cacome	${ }^{\text {W\% }} 0.0,0338$	${ }^{1} 0.1196$	${ }^{80} 00969$	${ }^{3} 0.0908$	${ }^{4} 0.2558$
5	ANSEE-1	* 0.0153	ग0.0101	${ }^{2} 00 \mathrm{mCl}$	${ }^{34} 0.08337$	${ }^{48} 0.1218$	20.1003	$\mathrm{Haloca}^{\text {a }}$	${ }^{40} 0.2581$
6	awhem-5	${ }^{3} 8.0 .0337$	${ }^{49} 0.0208$	50mas	\$0.0.0740	${ }^{20.3728}$	50.2984	${ }^{2037777}$	${ }^{10.6 s t}$
π	swarera	${ }^{182} 0.0722$	${ }^{3} 0.15838$	${ }^{40} 00538$	- 0.1551	${ }^{2} 0.278$	${ }^{53} 0.8419$	${ }^{2} 02468$	${ }^{20} 0.5140$
8	AxON]P-1	${ }^{00} 0.3432$	${ }^{50} 0.3368$	${ }^{61} 0,2841$	${ }^{38} 0.4764$	${ }^{58} 0.8247$	${ }^{62} 0.8503$	${ }^{6} 0.79 .5$	${ }^{60,5035}$
9	XYONIX-2	${ }^{40} 0.3432$	${ }^{39} 0.2606$	${ }^{2} 0,2841$	${ }^{3} \mathrm{C}, 4763$	${ }^{6} 0.5446$	${ }^{150,8088}$	${ }^{50} 07933$	${ }^{60} 0.8036$
10	eshayl-4	\$0,0,0490	\$0,0326	80.0469	${ }^{18} 0.0475$	${ }^{3} 10.0641$	${ }^{52} 0.0505$	${ }^{3} 0.0661$	${ }^{16} 0.4105$
11	csminis	${ }^{150} 0.0683$	${ }^{35} 0,0458$	${ }^{62} 000433$	${ }^{56} 0.0638$	${ }^{60} 0.1620$	300,0727	${ }^{0} 0.0922$	60.1513
12	cocemid-2	${ }^{14} 000062$	${ }^{12} 0.0027$	${ }^{140,0027}$	${ }^{12} 0.0086$	780.045	${ }^{12} 0.0299$	${ }^{5} 50.0351$	${ }^{20} 0.1275$
13	cosentis	${ }^{15} 0,0054$	${ }^{18} 0.0037$	${ }^{18} 0,0029$	${ }^{13} 0,0091$	${ }^{4} 0.0515$	${ }^{17} 0.0341$	50.045	${ }^{0,1449}$
14	crashene-z	${ }^{2}{ }^{2} 0,0083$	${ }^{22} 0,0044$	${ }^{20.0043}$	${ }^{30.0145}$	${ }^{3} 0.0500$	${ }^{22} 0,0401$	${ }^{20} 0.0400$	${ }^{3} 0.1242$
15	euscriseb-3	${ }^{3} 6.0068$	${ }^{24} 3,0043$	${ }^{3} 10048$	${ }^{250.0148}$	${ }^{2} 00058$	${ }^{2} 0.00397$	${ }^{2} 90.0397$	${ }^{2} 0.1322$
16	DAHUA,	$3^{50.0115}$	${ }^{32} 0,0090$	$3^{3} 0.00 / 2$	${ }^{30} 0.0201$	\%0.06S	${ }^{32} 0.0624$	${ }^{3} 0.0891$	${ }^{3} 0.1967$
47	DAFGSA-1	\%0.00e9	${ }^{2} 0.0049$	20.005	${ }^{270.0173}$	${ }^{38} 0.0$, $0^{2} 5$	${ }^{2} 0.0521$	${ }^{3} 0,0587$	${ }^{30,1739}$
12	DERM420G-5	\% $0.01 / 1$	${ }^{10,00113}$	${ }^{30} 0.0198$	${ }^{\text {atc.0.0251 }}$	\% 0,0803	30.08449	${ }^{380,0787}$	$50.20 \% 2$
19	DER2LAN0G-6	00,0102	${ }^{8} 0,0060$	${ }^{2} 0,0061$	${ }^{19} 0.0119$	$\mathrm{z}^{20.1542}$	${ }^{2} 000383$	* 0.0416	${ }^{4} 0.1280$
39	Eygrasi-2	${ }^{12} 0.0068$	${ }^{120,0029}$	70.0032	${ }^{150.0099}$	${ }^{2} 0.0026$	120.0370	${ }^{20.0410}$	20.1312
21	Everal-2	80.0047	120.0023	${ }^{510,0024}$	${ }^{10} 0.0079$	${ }^{3} 0.8 .897$	${ }^{11} 0.0256$	${ }^{1} 0.0285$	"0,0989
22	CORLLAF?	${ }^{2} 0.0220$	12.0137	80.0153	${ }^{3} \mathrm{Cosig} 9$	${ }^{38} 0.1902$	${ }^{3} 0.1379$	${ }^{32} 0.1537$	${ }^{5} 0.3589$
23.	cgrtila 3	${ }^{30} 0.0389$	W0,0245	${ }^{20.0 .253}$	${ }^{50} 0.1052$	${ }^{3} 0.2200$	${ }^{5 \times 2 \%}$	\% 0.3042	\% 0.5×86
24.	Hik 5	"0.0067		${ }^{20,0038}$	${ }^{30} 0.0140$	"0.046?		${ }^{8} 0.1361$	${ }^{78} 0.1228$
25	HEK-6	${ }^{18} 0,00697$	${ }^{100,0034}$	50.0083	${ }^{36} 0.0140$	${ }^{2} 0.0500$	${ }^{120.03241}$	${ }^{0} 0.0392$	${ }^{2} 0.1310$
26	Themias	${ }^{32} 0.0107$	50.0062	${ }^{*} 0.0064$	${ }^{3} 0.0192$	${ }^{760,0465}$	${ }^{15} 80,0319$	${ }^{10} 0.0348$	0.11.25
27	108M03-6	${ }^{3} 0.0122$	${ }^{3} 0,0,071$	${ }^{38} 0,0 / 76$	${ }^{2} 0.0188$	${ }^{34} 0.0458$	${ }^{4} 00.0316$	${ }^{4} 0,0042$	${ }^{13} 0.1032$
88	IS 500 EF -2	${ }^{41} 0.02013$	+20.0132	*0.013?	${ }^{30} 0.4489$	${ }^{2} 0.7861$	\$761360	${ }^{3} 0.1507$	$\sqrt{0,3806}$
29	arcode ${ }^{\text {a }}$	${ }^{60 ; 0153}$	${ }^{6} 0,0088$	${ }^{5} 0.0108$	${ }^{20} 0,8968$	\$0.1763	${ }^{5} 0.1227$	${ }^{50.358}$	$\sqrt[5]{10,2290}$
311	ThVOMATRTCS	30.01199	${ }^{3} 9.0081$	${ }^{510.008}$	${ }^{33} 0.0 .293$	${ }^{20} 0.1840$	3000928	${ }^{11} 0.9927$	${ }^{41} 0.24 \times 9$
31	18951mers-3	${ }^{22} 0,00075$	${ }^{30} 0.0440-$	${ }^{3} 0.0041$	${ }^{150,0106}$	\$0.0620	${ }^{23} 0,0402$	${ }^{2} 1,0500$	${ }^{3} 0.1519$
32		${ }^{31} 0.0114$	880,0689	${ }^{3} 0,0069$	${ }^{17} 0.0109$	75.0423	${ }^{5} 0,0425$	${ }^{18} 000338$	${ }^{2} 80.1015$
33	LSOLIISN-	${ }^{*} 0.0117$	${ }^{38} 10,0131$	\$0,060	${ }^{2} 0,0134$	${ }^{16} 000472$	${ }^{*} 0.0417$	${ }^{21} 50.0346$	${ }^{190.1096}$
34	M69scl-1	${ }^{41} 0.0135$		${ }^{40,0006}$	${ }^{36} 0,0231$	${ }^{38} 0.0 \times 46$		${ }^{3} 0.00578$	${ }^{32} 0.1628$
35	1065811-2	${ }^{32000137}$		$120,00 \% 7$	${ }^{3} 0.0236$	40,00\%		${ }^{35} 000623$	${ }^{3} 0.1810$
30	Erckiorceos-5	${ }^{71} 0.4257$	${ }^{3} 0.3001$	80, 2701	${ }^{52} 0.5522$	\%0.261	${ }^{38} 09835$	${ }^{57} 02139$	\%0.989
37	Microroresis-k	${ }^{720.4283}$	$40,383 x$	M0.3i32	${ }^{3} 0.5565$	70syen	${ }^{20.8195}$	${ }^{*} 0$ Sls	66.3215
38	Microsper-5	${ }^{3} 0,0068$	30.0015	${ }^{3} 0.0025$	${ }^{100} 0.0062$	${ }^{5} 001023$	6001\%	\%001s3	${ }^{2} 0,0755$
39	Micrasorv-6	${ }^{6} 0,0033$	${ }^{5} 025014$	${ }^{7} 00015$	${ }^{9} 0,0060$	${ }^{6} 0,0141$	50,0080	${ }^{50} 00.313$	40.0072
40	NEC-2	${ }^{2} 0.0028$	40m1	${ }^{100008}$	40.0019	$20.64 \times$	Frotex	0, 0021	Fgate
41	$\mathrm{NESO}-3$	kruer	40,0013	0.0040	${ }^{2} 0.019$	${ }^{1} 0,0044$	${ }^{1} 0.0022$	370102	10.080
42	NETROTECHNOLOCKS	${ }^{49} 0.0068$	${ }^{20.0042}$	${ }^{2} 0.0032$	${ }^{18} 0,0094$	${ }^{2} 0.0561$	\% 0.05827	${ }^{2} 0.0438$	40.1264
43	HeOROTECHMOLOGK-6	${ }^{8} 80.0201$	W0,0153	${ }^{3} 0,0142$	${ }^{320.0534}$	${ }^{3} 022558$	${ }^{31} 0,2695$	${ }^{5} 02125$	${ }^{3} 0.4459$
44	NOMY/AND-2	W0,0811		${ }^{9} 0.0085$	${ }^{32} 0.1562$	${ }^{(1) 2005}$		${ }^{30} 0.3780$	${ }^{60} 0.6259$
45	NORLE-1	${ }^{3} 80.2512$	W0.2049	${ }^{80} 02032$	${ }^{53} 0.3681$	${ }^{180,9856}$	${ }^{6} 9.9988$	${ }^{2}$	"0,997
46	NORLIS 2	\$0.1816	\$0,1565	${ }^{6} 0.2517$	${ }^{6} 0 \times 2944$	F0, $0^{2} \times 1$	${ }^{520.9939}$	${ }^{2} 099967$	${ }^{7} 9,5987$
47	NTECHLAB 5	${ }^{16} 10.00654$	${ }^{19} 0.0089$	${ }^{2} 0.0039$	${ }^{11} 0,0179$	${ }^{750.0448}$	${ }^{180.05347}$	${ }^{10} 0.0347$	${ }^{4} 0.1235$
48	NTECHLAB 6	${ }^{780,0669}$	${ }^{1200098}$	${ }^{12} 0,0034$	${ }^{3} 0.0154$	${ }^{12} 0.0351$	${ }^{1 \times 0.0301}$	गुपu301	${ }^{180.1088}$
49	CNANTASOM-1	"0.2198	\%0.8857	${ }^{7} 0.4426$	${ }^{6} 09502$	${ }^{2} 0,63 ¢ 9$	${ }^{\text {30, }} \mathbf{0} 9915$	W999.40	${ }^{11880}$
5i)	(aAcrome 4	${ }^{49} 0.0447$	${ }^{52} 0,1318$	प0.0318	\$0.0945	${ }^{4} 0.7951$	${ }^{4} 0.1585$	${ }^{59} 0.1515$	${ }^{30} 0.3598$
51	TXNEONES 5	\$0.0120	"0.0072	30.0072	${ }^{30} 0.0237$	30,0617	\% 0.10447	x 10.1047	${ }^{50.149}$
52	BEMLIETXPORKS-2	\$0,0,1918	${ }^{58} 0.0320$	${ }^{190.0268}$	${ }^{18} 0.003$	${ }^{2} 0.2341$	${ }^{32} 0.2049$	${ }^{5} 0.1775$	30.3049
53	FEnSMEAL-7	${ }^{380.0109}$	${ }^{30,0055}$	${ }^{35} 0.0065$	${ }^{100.62388}$	${ }^{10} 0,2306$	4.0.1020	${ }^{50.1020}$	W0.2671
54	FEASEESA-2	${ }^{3} 60.0105$	${ }^{000.0082}$	\$0.0162	${ }^{350.02355}$	49,1264	\$0.09091	450.01991	${ }^{10.2615}$
55	SRNSETMEM-6	${ }^{9} 0,0048$	${ }^{30,0018}$	${ }^{3} 0.0018$	\$0.0037	${ }^{5} 0.0234$	${ }^{6} 0,0165$	${ }^{50.0168}$	${ }^{5} 0.0609$
56	SESSETMML-1	${ }^{10} 0,0049$	${ }^{8} 0.0018$	${ }^{3} 00018$	\$0.0041	${ }^{7} 0.245$	${ }^{8} 00175$	${ }^{6} 0.0177$	90,0628
57	Shatcande	${ }^{8} 0.0424$	${ }^{510.0312}$	P0,012	${ }^{5 \times 0.0542}$	${ }^{150 / 4422}$	${ }^{33} 01109$	${ }^{5501108}$	${ }^{19} 9.2629$
58	SHAMANT	${ }^{87} 0.0422$	\%0,0310	${ }^{80} 0 \times 10$	${ }^{3} 0.0529$	470.426	\$0.1112	${ }^{80.1122}$	${ }^{4} 50.2624$
59	SKILAET-4	${ }^{23} 09449$	20,9531	709722	${ }^{2} 20.9738$	70.9683	${ }^{82} 0.9569$	009740	${ }^{60} 08781$
69	S\$NES15, 3	${ }^{1650.1721}$	${ }^{880,1350}$	$6{ }^{6}$	${ }^{61} 0.257$	${ }^{650.5832}$	${ }^{58} 0.5296$	${ }^{0} 0.52 \%$	${ }^{6} 0.7489$
61	TEMLAN-5	${ }^{20.0092}$	${ }^{60,0053}$	\%0.0058	${ }^{3} 0,6213$	${ }^{50.6998}$	${ }^{*} 0.0687$	${ }^{380.07 \% 0}$	${ }^{40} 0.2089$
62	TGER-2	${ }^{20,0075}$	30.0044	800044	${ }^{9} 0.0177$	${ }^{3} 000848$	${ }^{350.0693}$	${ }^{3} 0.06 s 8$	${ }^{3} 0.2016$
65	Treer ${ }^{3}$	${ }^{2} 0,0075$		${ }^{36} 00044$	${ }^{2} 0.0177$	\% 0.0888		F0.isce	30.2015
64	Tcrames-a	${ }^{20,0058}$	${ }^{18} 0.0033$	${ }^{760.0033}$	${ }^{18} 8.0119$	\% 10.048	${ }^{31} 0,0529$	${ }^{3} 0.1529$	39.1599
65	тoshra- 1	40.008]	${ }^{\text {P0, }} 0.0035$	${ }^{180.0035}$	${ }^{60,0129}$	${ }^{2} 0.0618$	30.0696	${ }^{3} 0.0085$	${ }^{3} 0,1819$
66	70-1	150,0302	\$0.0221	${ }^{5} 0.0221$	${ }^{34} 0.0569$	${ }^{5} 0.2036$	${ }^{510.1354}$	${ }^{12} 0.1958$	${ }^{150.3657}$
67	WGIESATSOUMTtans-5	0,0118				${ }^{2} 0.438$			
68		40.0125		*00077	${ }^{42} 0.0258$	${ }^{6104260}$		${ }^{38} 1.4155$	${ }^{6} 0.657$
68	2isorycabs-b	${ }^{3} 0.00033$	0.0015	${ }^{510015}$	${ }^{50.0049}$	T 0.0 .298	${ }^{10} 0.0185$	${ }^{9} 9.0206$	- 0.0735
71	Wexcruare-7	+ 0.1033	${ }^{6} 0.0014$	90.004	${ }^{3} \mathrm{C}, 0.1039$	\% ${ }^{10.2889}$	9.0185	80.1200	${ }^{2} 0,0737$
71	meacrio-5	20,3092	${ }^{20} 0.0057$	300054	${ }^{31} 0.0182$	*0.1697	${ }^{32} 01076$	${ }^{3} 0.1717$	${ }^{50,3775}$
72	H2r-	Y0.00sa	\$1.0041	${ }^{3} 0.0012$	${ }^{3} 0.0033$	${ }^{3} 0.6123$	${ }^{3} 0.0004$	Sa005	30.ces3:
53	vrew 5	${ }^{110.0048}$	30.0020	W0,0620	\$0.0041	40.129	${ }^{40.0076}$	+0,9088	${ }^{\circ} 0.0050$

Table 25: Comparing enrollment styles for the FKVT 2018 mugshot sets. Consolidated refers to enrollment of all lifetime images in one template Unconsolidated refers to enrollment of those images separately under different identifiers. Columns $3-6$ values are FNIR at rank 1 and with $T=0$. Column 7-10 values are high threshold FNIR. Throughout, blue superscripts indicate the rank of the algorithm for that column, and the best three values are highlighted in yellow and green.

2019/09/11	FNIR(N, $\mathrm{R}, \mathrm{T})=$	False neg. identification tale	$\mathrm{N}=$ Num, enrolled subjects	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
17:24:52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined		$\mathrm{T}>\mathrm{O} \rightarrow$ Identification

2019/09/11	$\operatorname{FNIR}(\mathbb{N}, \mathrm{R}, \mathrm{T})=$	False neg. identification rate	$\mathrm{N}=$ Num. enrolled subjects	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
17:24:52	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	False pos. identification rate	$\mathrm{R}=$ Num. candidates examined		I> $\boldsymbol{0} \rightarrow$ Identification

Figure 19: [Mugshot Dataset] Error rate reductions in 2018. For each FrVt 2018 participant, the plot shows accuracy gains between Phase 1 (Feb 2018), Phase 2 (Jun 2018) and Phase 3 (Nov 2018) according to two metrics: rank one miss rate, FNIR(N, 1, 0), and high threshold, FNIR(N, L, T), with T set to achieve FPIR $=0.003$. The text "Red=" gives the best reduction multiplier for the given metric on the recent enrollment strategy - a smaller value is better.

Figure 20: [FRVT-2018 Mugshot Ageing Dataset] Contrast of ageing and population size dependency. The Figure shows, at left, the dependence FNIR(N) for the FRVT-2018, as tabulated in Table 12. At right, is FNIR $(N=3000000, \Delta T)$ from Figure 62 Ageing miss rates are computed over all searches binned by number of years between search and initial enrollment. In all cases, $F P I R=0.01$.

Figure 21: [Twins Dataset] High scores from twins. The Figure shows native similarity scores from searches into a dataset of $N=640000$ background mugshot images plus 104 portrait images, one from each of one of a pair of twins. Two distributions of scores are plotted for each of monozygotic (identical) and dizygotic (fraternal) twins. The first distribution ("AA") shows the mate score from Twin A against their own enrollment. The second ("AB") shows scores from searches of Twin B against the Twin A enrollment: As these are non-mate scores they should be below the various thresholds shown as horizontal lines. That they usually are not is an indication that twins produce very high non-mate scores. Note in theory half of dizygotic (fraternal) twins are different sex. In the sample used here some fraternal twins are correctly rejected.

Appendices

Appendix A Accuracy on large-population FRVT 2018 mugshots

| $2019 / 09 / 11$ | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

Enrolled population size, N
Figure 22: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR (N, R), across various gallery sizes and ranks 1, 10 and 50 . The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means $F P I R=1$, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640000 .

Enrolled popula ion size, N
Figure 24: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR (N, R), across various gallery sizes and ranks 1,10 and 50 . The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means $F P I R=1$, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640000 .

Enrolled popula ion size， N
Figure 25：［FRVT－2018 Mugshot Dataset］Rank－based identification miss rates vs．number of enrolled subjects．The figure shows false negative identification rates， FNIR (N, R) ，across various gallery sizes and ranks 1,10 and 50 ．The threshold is set to zero，so this metric rewards even weak scoring rank 1 mates．This also means $F P I R=1$ ，so any search without an enrolled mate will return non－mated candidates．For clarity，results are sorted and reported into tiers spanning multiple pages，the tiering criteria being rank 1 hit rate on a gallery size of 640000.

Figure 26: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates, FNIR (N, R), across various gallery sizes and ranks 1,10 and 50 . The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means $F P I R=1$, so any seanch without an enrolled mate will retum non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the tiering criteria being rank 1 hit rate on a gallery size of 640000 .

Enrolled popula ion size， N
Figure 27：［FRVT－2018 Mugshot Dataset］Rank－based identification miss rates vs，number of enrolled subjects．The figure shows false negative identification rates， FNIR (N, R) ，across various gallery sizes and ranks 1,10 and 50 ．The threshold is set to zero，so this metric rewards even weak scoring rank 1 mates．This also means $F P I R=1$ ，so any search without an enrolled mate will return non－mated candidates．For clarity，results are sorted and reported into tiers spanning multiple pages，the tiering criteria being rank 1 hit rate on a gallery size of 640000 ．

Enrolled population size, N

Enrolled population size，N
Figure 29：［FRVT－2018 Mugshot Dataset］Rank－based identification miss rates vs．number of enrolled subjects．The figure shows false negative identification rates， FNIR (N, R) ，across various gallery sizes and ranks 1,10 and 50 ．The threshold is set to zero，so this metric rewards even weak scoring rank 1 mates．This also means $F P I R=1$ ，so any search without an enrolled mate will retum non－mated candidates．For clarity，results are sorted and reported into tiers spanning multiple pages，the tiering criteria being rank 1 hit rate on a gallery size of 640000.

| $2019 / 09 / 11$ | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

Figure 30: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50 . This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR $=1$, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N=640000$ subjects.

Dataset
Tier 2

- 00640000	
-	01600000
	0s 0 06000
	D600mol
-	12000000
enroliment_style	
	Ifetime_consolicsted recent

Figure 32: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1 , i.e. any search without an enrolled mate will retum non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N=640000$ subjects.

Tler 4
二 00640000
二 01600000
$=03000000$
二 060000000
12000000

Figure 33：［FRVT－2018 Mugshot Dataset］Rank－based identification miss rates vs．rank．The figure shows false negative identification rates（FNIR）for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists．Note that with threshold set to zero，FPIR $=1$ ， i．e．any search without an enrolled mate will return non－mated candidates．Results are sorted and reported into tiers for clarity，with the tiering criteria being rank 1 hit rate on a gallery size of $N=640000$ subjects．

Rank
Figure 34: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50 . This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR $=1$, i.e. any search without an enrolled mate will retum non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N=640000$ subjects.

enrolliment＿style －．．ireume＿consolicated

Detaset 2018 Mugshots Ther 6
－ 00640000
－ 01800000
－ 0180000000 － 06000000

Figure 36: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50. This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR $=1$, i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit rate on a gallery size of $N=640000$ subjects.

enroliment＿style
－．．．recelment consoliceted
Dataset 2018 Mugshots
Tier 8
－ 00640000
－ 01800000
二 03000000
－ 06000000
Rank
Figure 37：［FRVT－2018 Mugshot Dataset］Rank－based identification miss rates vs，rank．The figure shows false negative identification rates（FNIR）for ranks up to 50 ． This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists．Note that with threshold set to zero，FPIR＝ 1 ， i．e．any search without an enrolled mate will retum non－mated candidates．Results are sorted and reported into tiers for clarity，with the tiering criteria being rank 1 hit rate on a gallery size of $N=640000$ subjects．

| $2019 / 09 / 11$ | FNIR $(N, R, T)=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

Figure 38: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $F N I R\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Enrolled population size， N
Figure 39：［FRVT－2018 Mugshot Dataset］Threshold－based identification miss rates vs．number of enrolled subjects．The figure shows FNIR（N，T）across various gallery sizes when the threshold is set to achieve the given FPIRs．The rank criterion is irrelevant at high thresholds as mates are always at rank 1 ．The results are computed from the trials listed in rows 1－10 of Table 5．Less accurate algorithms were not rut on large N ，so results are missing．For clarity，results are sorted and reported into tiers spanning multiple pages．The tiering criteria is complicated：First paging by $F N I R\left(N_{b}, 1,0\right)$ ，then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$ ．

Figure 40: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1 . The results are computed from the trials listed in rows $1-10$ of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR $\left(N_{b}, 1,0\right)$, then sorting by median FNIR($\left.N_{b}, T\right), N_{b}=640000$.

Enrolled population size, N
Figure 41: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $\operatorname{FNIR}\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Figure 42: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1 . The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $\operatorname{FNIR}\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Figure 43: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows $F N I R(N, T)$ across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $F N / R\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Enrolled popula ion size, N
Figure 44: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1 . The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $\operatorname{FNIR}\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Figure 45: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1 . The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $\operatorname{FNIR}\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Figure 46: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $\operatorname{FNIR}\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Figure 47: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $\operatorname{FNIR}\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Figure 48: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $F N I R\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

Figure 49: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are computed from the trials listed in rows 1-10 of Table 5. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by $F N \operatorname{NR}\left(N_{b}, 1,0\right)$, then sorting by median $F N I R\left(N_{b}, T\right), N_{b}=640000$.

$2019 / 09 / 11$	FNIR $(N, R, T)=$	False neg. identification rate	$\mathrm{N}=$ Num. enrolled subjects		
$17: 24: 52$	FPIR $N, T)=$	False pos. identification tate	$\mathrm{R}=$ Num. candidates examined	\quad	$\mathrm{T}=$ Threshold
:---	\quad	$\mathrm{T}=0 \rightarrow$ Investigation			
:---					
$\mathrm{T}>0$					

Figure 50: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive iden ifica ion rate, $\operatorname{FPIR}(T)$
Figure 51: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N,L,T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5 . These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive iden ifica ion rate, FPIR(T)
Figure 52: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive iden ifica ion rate, $\operatorname{FPIR}(T)$
Figure 53: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N,L,T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5 . These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N , and mate scores are independent of N . Other algorithms adjust scores in an attempt to make FPIR independent of N .

False positive iden ifica ion rate, $\operatorname{FPIR}(T)$
Figure 54: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5 . These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

Figure 55: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N,L,T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5 . These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

Figure 56: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N,L,T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5 . These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive iden ifica ion rate， $\operatorname{FPIR}(T)$
Figure 57：［FRVT－2018 Mugshot Dataset］Identification miss rates vs．false positive rates．The figure shows miss rates FNIR（N，L，T）as a function of FPIR（N，T），with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5 ．These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives，such as when human reviewer labor is not matched to the volume of searches．Dark lines join points of equal threshold：If horizontal，FPIR（T） rises with N ，and mate scores are independent of N ．Other algorithms adjust scores in an attempt to make FPIR independent of N ．

False positive iden ifica ion rate， $\operatorname{FPIR}(T)$
Figure 58：［FRVT－2018 Mugshot Dataset］Identification miss rates vs．false positive rates．The figure shows miss rates FNIR（N，L，T）as a function of FPIR（ N ，T ），with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5．These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives，such as when human reviewer labor is not matched to the volume of searches．Dark lines join points of equal threshold：If horizontal，FPIR（T） rises with N ，and mate scores are independent of N ．Other algorithms adjust scores in an attempt to make FPIR independent of N ．

False positive identification rate， $\operatorname{FPIR}(T)$
Figure 59：［FRVT－2018 Mugshot Dataset］Identification miss rates vs．false positive rates．The figure shows miss rates FNIR（N，L，T）as a function of FPIR（N，T），with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5 ．These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives，such as when human reviewer labor is not matched to the volume of searches．Dark lines join points of equal threshold：If horizontal，FPIR（T） rises with N ，and mate scores are independent of N ．Other algorithms adjust scores in an attempt to make FPIR independent of N ．

False positive identification rate, FPIR(T)
Figure 60: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with N ranging from 640000 to 12000000 as noted in rows 1-10 of Table 5. These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T) rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.

False positive iden ifica ion rate，FPIR（T）
Figure 61：［FRVT－2018 Mugshot Dataset］Identification miss rates vs．false positive rates．The figure shows miss rates FNIR（N，L，T）as a function of FPIR（N，T），with N ranging from 640000 to 12000000 as noted in rows $1-10$ of Table 5．These error tradeoff characteristics are useful for applications where a threshold must be elevated to limit false positives，such as when human reviewer labor is not matched to the volume of searches．Dark lines join points of equal threshold：If horizontal，FPIR（T） rises with N ，and mate scores are independent of N ．Other algorithms adjust scores in an attempt to make FPIR independent of N ．

Appendix B Effect of time-lapse: Accuracy after face ageing

Figure 62: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs, rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

Figure 63: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs, rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

Figure 64: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

Figure 65: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

Dataset: 2018 Mugshots

 Tier: 5Time Lapse
(years)

- 100,02
- 102.04$]$
- 104,063
- 08.10$]$
- ${ }^{10.12]}$
- $(14,18]$
Figure 66: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

Dataset: 2018 Mugshots

 Tier: 6Time Lapse
(years)

- $(00,02)$
$-\quad 102.04]$
- 104,06$]$
- 08.10$]$
- 110.12$]$
$-\quad(12.14]$
- 114,18$]$
Figure 67: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

Dataset: 2018 Mugshots

 Tier: 7Time Lapse
(years)

Figure 68: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.
Figure 69: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

Figure 70: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

$2019 / 09 / 11$	FNIR(N, $\mathrm{R}, \mathrm{T})=$	False neg. identification rate	$\mathrm{N}=$ Num. enrolled subjects	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
$17: 24: 52$	FPIR $(\mathrm{N}, \mathrm{T})=$	False pcs. identification rate	$\mathrm{R}=$ Num. candidates examined	$\mathrm{T}>0 \rightarrow \mathrm{Id}$.	

Figure 71: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment.

| $2019 / 09 / 11$ | FNIR $(N, R, T)=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

False positive identification rate（FPIR）
Figure 72：［FRVT－2018 Mugshot Ageing Dataset］Identification miss rates vs．FPIR by time－elapsed．The oldest image of each individual is enrolled．Thereafter， all more recent images are searched．Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment．FPIR is computed from the same FRVT 2018 non－mates noted in row 3 of Table 5 with $\mathrm{N}=3000000$.

Figure 73：［FRVT－2018 Mugshot Ageing Dataset］Identification miss rates vs．FPIR by time－elapsed．The oldest image of each individual is enrolled．Thereafter， all more recent images are searched．Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment．FPIR is computed from the same FRVT 2018 non－mates noted in row 3 of Table 5 with $\mathrm{N}=3000000$ ．

Figure 74: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with N $=3000000$.

Figure 75: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent inages are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with $\mathrm{N}=3000000$.

Dataset 2018 Mugshots $N=3068801$

- $(00,02 \mid$ - ${ }^{(020,04 \mid} 106 \mid$ - 08,08 - ${ }^{(008,10|2|}$ - $(10.12 \mid$二 $(12,14)$

False positive identification rate (FPIR)

Figure 76: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 5 and binned by number of years between search and initial enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 5 with N = 3000000.

| $2019 / 09 / 11$ | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

Figure 77：［FRVT－2018 Mugshot Ageing Dataset］Native mate scores vs．time－elapsed．The oldest image of each individual is enrolled．Thereafter，all more recent images are searched．Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment．

Figure 78: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Figure 79: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Figure 80: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Figure 81: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Figure 83: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Figure 84: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Figure 85: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Figure 86: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 5 binned by number of years between search and initial enrollment.

Appendix C Effect of enrolling multiple images

False positive identifica ion rate, $\operatorname{FPIR}(T)$
Figure 87: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation -see section 2.3.

Dataset： 2018 Mugshot， $\mathrm{N}=160000$

 Tier＝2－ $\mathrm{FPIR}=0.0003$
－ $\mathrm{FPIR}=0.0010$
－ $\mathrm{FPR}=0.00030$
－ $\operatorname{FPIR}=0.0300$
－ $\mathrm{FPIR}=0.3000$
＊区＋■•・き

Figure 88：［FRVT－2018 Mugshot Dataset］Effect of enrolling multiple images for each identity．The plot shows an identification miss rates vs．false positive rates，at seven operating thresholds．The enrolled population size is fixed．The images are enrolled with lifetime－consolidation－see section 2．3．

> Dataset 2018 Mugshot, $\mathrm{N}=1600000$ Tier=3

$$
\text { - } \mathrm{FPPR}=0.0003
$$

$$
\text { - } \mathrm{FPPR}=0.0010
$$

$$
\begin{aligned}
& \text { — } \mathrm{FPR}=0.0030 \\
& \text { - } \mathrm{PPR}=0.0100
\end{aligned}
$$

$$
\begin{array}{r}
\text { - } \mathrm{FPIR}=0.0300 \\
\text { FPIR }=0.1000
\end{array}
$$

$$
\begin{aligned}
\text { — } & \text { FPIRR } R=0.30000
\end{aligned}
$$

Figure 89：［FRVT－2018 Mugshot Dataset］Effect of enrolling multiple images for each identity．The plot shows an identification miss rates vs．false positive rates，at seven operating thresholds．The enrolled population size is fixed．The images are enrolled with lifetime－consolidation－see section 2.3.

Dataset： 2018 Mugshot， $\mathrm{N}=1600000$

 Tier＝4Figure 90：［FRVT－2018 Mugshot Dataset］Effect of enrolling multiple images for each identity．The plot shows an identification miss rates vs．false positive rates，at seven operating thresholds．The enrolled population size is fixed．The images are enrolled with lifetime－consolidation－see section 2．3．

Figure 91：［FRVT－2018 Mugshot Dataset］Effect of enrolling multiple images for each identity．The plot shows an identification miss rates vs．false positive rates，at seven operating thresholds．The enrolled population size is fixed．The images are enrolled with lifetime－consolidation－see section 2．3．

False posi ive identification rate， $\operatorname{FPIR}(T)$

Figure 92：［FRVT－2018 Mugshot Dataset］Effect of enrolling multiple images for each identity．The plot shows an identification miss rates vs．false positive rates，at seven operating thresholds．The enrolled population size is fixed．The images are enrolled with lifetime－consolidation－see section 2．3．

Appendix D Accuracy with poor quality webcam images

| $2019 / 09 / 11$ | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

Figure 93：［Webcam Dataset］Identification miss rates vs．rank．The results apply to cross－domain recognition in which webcams are searched against enrolled mugshots．The FNIR values are higher than those for mugshot－mugshot identification due to low image resolution，lighting and less constrained subject pose in webcam images－see Figure 4.

Figure 94：［Webcam Dataset］Identification miss rates vs．rank．The results apply to cross－domain recognition in which webcams are searched against enrolled mugshots．The FNIR values are higher than those for mugshot－mugshot identification due to low inage resolution，lighting and less constrained subject pose in webcam images－see Figure 4.

Ditaset Webcam FNIR $(R=1, N=1500000$ and Algonthm － 0.148 eyedea 3 － 0.138 aware＿a － 0128 aware＿6 － 0.117 rankone＿0 － 0.104 neurrotechnology －a 103 carmi＿5 －a 100 incode＿ 0 － 0.095 tger＿0 － 0095 garilla＿ 1 － 0.090 aware － $00863 \mathrm{dim}-0$ － 0.078 realnetworks＿0 － 0078 realnetwarks － 0.077 camy＿4 － 0076 innoratrics＿0 － 0074 3dme 6 － 0.074 innovatrics＿2 － 0072 idemia＿6 － 0.070 rankone－2 － 0.070 garilla＿3 － 0.068 vocom＿ 0 － 0067 aware＿5 － 0.066 tanan － 0.062 3din－5 － 0.060 ysheng＿0 － 0060 yisheng． 1 － 0.059 cognitec＿0 － 0058 shaman＿－ 6 － 00057 shaman＿？二 0.056 nec＿1 － 0.058 vd＿1 － 0.052 tenan
－ 0048 incade＿ 2 － 0.047 alchera＿0

Figure 95：［Webcam Dataset］Identification miss rates vs．rank．The results apply to cross－domain recognition in which webcams are searched against enrolled mugshots．The FNIR values are higher than those for mugshot－mugshot identification due to low image resolution，lighting and less constrained subject pose in webcam images－see Figure 4.

Figure 96：［Webcam Dataset］Identification miss rates vs．rank．The results apply to cross－domain recognition in which webcams are searched against enrolled mugshots．The FNIR values are higher than those for mugshot－mugshot identification due to low image resolution，lighting and less constrained subject pose in webcam images－see Figure 4.

| $2019 / 09 / 11$ | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

Figure 97：［Webcam Dataset］Identification miss rates vs．false positive rates．The results apply to cross－domain recognition in which webcams are searched against enrolled mugshots．The FNIR values are higher than those for mugshot－mugshot identification due to low image resolution，lighting and less constrained subject pose in webcam inages－see Figure 4.

Figure 98：［Webcam Dataset］Identification miss rates vs．false positive rates．The results apply to cross－domain recognition in which webcams are searched against enrolled mugshots．The FNIR values are higher than those for mugshot－mugshot identification due to low image resolution，lighting and less constrained subject pose in webcam images－see Figure 4.

Figure 99：［Webcam Dataset］Identification miss rates vs．false positive rates．The results apply to cross－domain recognition in which webcams are searched against enrolled mugshots．The FNIR values are higher than those for mugshot－mugshot identification due to low image resolution，lighting and less constrained subject pose in webcam images－see Figure 4.

Appendix E Accuracy for profile-view to frontal recognition

Figures 100-102 gives accuracy results for searching 100000 mated and 100000 non-mated profile-view images against the same FRVT 2018 frontal enrollment dataset, $\mathrm{N}=1600000$, used in the main mugshot trials. This experiment corresponds to row-13 of Table 5. An example of profile-view image is given in Figure 5.

Figure 100：［Mugshot and profile－view dataset］Rank－based accuracy．For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics for frontal and profile－view searches into an enrolled set of $N=1600000$ frontal images．Note that some algorithms fail on profile－view images with FNIR $\rightarrow 1$－this evaluation did not ask developers to provide profile－view capability．Some algorithms，on the other hand，give FNIR approaching that for frontal－view searches using c． 2010 algorithms．The best result is that 91% of profile－view searches yield the correct mate at rank 1，and better than 94% in the top－50 candidates．

Figure 101: [Mugshot and profile-view dataset] Threshold-based accuracy. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics for frontal and profile-view searches into an enrolled set of $N=1600000$ frontal images. Note that some algorithms fail on profile-view images with FNIR $\rightarrow 1$ - this evaluation did not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c. 2010 algorithms.

Figure 102: [Mugshot and profile-view dataset] Speed-accuracy tradeoff. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics for frontal and profile-view searches into an enrolled set of $N=1600000$ frontal inages. Some algorithms fail on profile-view images with FNIR $\rightarrow 1$-this evaluation did not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c. 2010 algorithms. Blue lines connect points of equal threshold from which it is evident that some algorithms would give markedly higher false positive outcomes if profile-view images were searched in a system configured for frontal searches. This would be a vuinerability in an access control system.

Appendix F Accuracy when identifying wild images

| $2019 / 09 / 11$ | FNIR $(N, R, T)=$ | False neg. identification rate | $\mathrm{N}=$ Num. enrolled subjects | $\mathrm{T}=$ Threshold |
| :--- | ---: | :--- | :--- | :--- |$\quad \mathrm{T}=0 \rightarrow$ Investigation

Dataset cs5. Tier=1 FN PiR $=1, N=1107000$) and Algorithm	
- 0.057 yocord_3	- 0.044 xitu_4
- 0.056 demmalog_6	- 0.044 vecord_5
- 0.054 texan_0	- 0.044 ioema_5
- 0.053 cogent 3	- 0.043 isystems_3
- 0.052 Sodmis	- 0.049 mechl30_4
- 0.052 licemia_6	0.048 usionlabs
- 0.052 ircode_1	- 0.041 ntechlab_0
-0.051 cognitec 3	0.040 sat 1
-0.051 visiorlabs_3	- 0.039 incode_3
- 0.051 ioemia_4	- 0.039 micrascrt_ 4
- 0.050 tevian_4	0.099 incode_2
- 0.050 neurtectiralogy	0.038 ntechlab_5
- 0.049 isystems_2	- 0.0388 तtechlat_6
- 0.046 remakal2	- 0.038 evera_3
- 0.046 yitu_2	0.038 d马hua_1
- 0005 cogent 2	- 0.038 sensetrime, 1
$\text { - } 0045 \text { ntechiad_ } 1$	- 0.033 microsoft_5
- 0.045 gonila_2	

Figure 103: [Wild Dataset] Identification miss rates vs. rank. For the wild dataset, the figure shows false negative identification rates (FNIR) vs, rank when the threshold is set to zero. This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery. Specifically, wild images were searched against 1.1 million individuals enrolled with wild images as well.

Figure 104：［Wild Dataset］Identification miss rates vs．rank．For the wild dataset，the figure shows false negative identification rates（FNIR）vs．rank when the threshold is set to zero．This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery．Specifically，wild images were searched against 1.1 million individuals enrolled with wild images as well．

Figure 105：［Wild Dataset］Identification miss rates vs．rank．For the wild dataset，the figure shows false negative identification rates（FNIR）vs．rank when the threshold is set to zero．This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery．Specifically，wild images were searched against 1.1 million individuals enrolled with wild images as well．

Detaset \cos ．Tier－4
FNR（R $=1, N=110700$
FN $R(R=1, N=1107000$
and Algorithm
－ 1.000 camu＿5－ 1.588 aware＿－
— 1.000 lookman＿3 \quad－ 0.580 aware＿－ 1 － 1.000 smilat a － 1.000 smilart＿1 － 1.000 smart＿2
－ 1000 dger＿ 0 － 1.000 neurotechnology＿0－ 0342 microfocus＿2 － 1000 саmı＿4
－ 1.000 hik＿ 6
－ 0.999 nec＿0
－ 0.0992 reaneetwarks＿2
－ 0.983 nearnatechnology
－ 0.954 neurotecthnology＿
－ 0.928 everal＿1
－ 0.834 smilat＿
－ 0.620 quartasort＿1

Figure 106：［Wild Dataset］Identification miss rates vs．rank．For the wild dataset，the figure shows false negative identification rates（FNIR）vs．rank when the threshold is set to zero．This metric is relevant to human reviewers who will traverse candidate lists checking whether any of the returned identities match to the search imagery：Specifically，wild images were searched against 1.1 million individuals enrolled with wild images as well．

$2019 / 09 / 11$	FNIR $(N, R, T)=$	False neg. identification rate	$\mathrm{N}=$ Num. enrolled subjects	$\mathrm{T}=$ Threshold	$\mathrm{T}=0 \rightarrow$ Investigation
$17: 24: 52$	FRIR $(N, T)=$	False pos. identification rate	$\mathrm{R}=$ Num. candidates examined	$\mathrm{T}>0 \rightarrow \mathrm{Identification}$	

Dataset csf. Tier $=1$
FNIR $(N=1107000, F P I R=02)$ FNIRMN $=11070$
and Algorithm

- 0.055 idemia_ 6
- 0.053 texan_ 0
$-0.0503 \mathrm{~cm} \mathrm{~cm}_{2} 5$
- 0.0 .07 incocie.
- 0.045 demalog_6
- 0.004 neurrectrnoiog_. 6
- o..044 cogentra
- 0.043 idemia_ 5
- 0.023 woccro 3
- 0.040 cogntec_s
- unan msionabs. 3
- 0.039 isystems_2
- 0.099 y 10.22
- 0.036 gontia 2
- 0.0 .055 gonlia- 2
- 0.034 youe 4
- 0.034 ntechlab_1
- 0.033 incocie_- 2
- 0.032 isysterns 3
- 0.091 visioniabs_5
- 0.031 incade 3 - 0.030 ntecnlat 4 - 0.090 yoccros 5 - 0.028 microsot. 4
- 0.028 slat-1
- 0.027 dahua -1
- 0.025 everai_9
- 0.024 ntecnlan_ 5
- 0.020 xsioniats. 7
- 0.019 microsont_5
- -0.825 senseome

0001
0.010
0.100
1.000

Figure 107: [Wild Dataset] Identification miss rates vs. false positive rates. The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery. On the vertical axis is miss rate FNIR(N,T,L) with $N=1107000$, as a function of false positive identification FPIR(N, T). The rapid increase in FNIR below FPIR $=0.1$ suggests that some background identities in the gallery are actually present in the non-mated search sets. This issue will be addressed in the 2019 revision of this report.

Figure 108: [Wild Dataset] Identification miss rates vs. false positive identification rate, $\operatorname{FPIR(T)}$, rates. The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery. On the vertical axis is miss rate $F N I R(N, T, L)$ with $N=1107000$, as a function of false positive identification FPIR(N, T). The rapid increase in FNIR below FPIR $=0.1$ suggests that some background identities in the gallery are actually present in the non-mated search sets. This issue will be addressed in the 2019 revision of this report.

Figure 109: [Wild Dataset] Identification miss rates vs. false positive rates. The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery. On the vertical axis is miss rate $F N I R(N, T, L)$ with $N=1107000$, as a function of false positive identification FPIR(N, T). The rapid increase in FNIR below FPIR $=0.1$ suggests that some background identities in the gallery are actually present in the non-mated search sets. This issue will be addressed in the 2019 revision of this report.

False positive identification rate， $\operatorname{FPIR(T)}$

Figure 110：［Wild Dataset］Identification miss rates vs．false positive rates．The figure shows accuracy of algorithms on wild images searched against wild images of 1.1 million individuals enrolled into a gallery，On the vertical axis is miss rate $F N I R(N, T, L)$ with $N=1107000$ ，as a function of false positive identification $F P I R(N, T)$ ． The rapid increase in FNIR below FPIR $=0.1$ suggests that some background identities in the gallery are actually present in the non－mated search sets．This issue will be addressed in the 2019 revision of this report．

Appendix G Search duration

As in and prior tests, this section documents search speeds spanning three orders of magnitude In applications where search volumes are high enough, this will have implications for hardware requirements especially for large N or when search duration is appreciably larger than the time it takes to prepare a template from the search image(s). Further, given very large (and growing) operational databases, the scalability of algorithms is important. It has been reported previously [8] that search duration can scale sublinearly with enrolled population size N. Further there has been considerable recent research on indexing, exact [13] and approximate nearest neighbor search [1,13] and fast-search [14,16] .

Figure 111 charts the search duration measurements presented earlier in Tables 6-9.
D. Most algorithms scale linearly. For those in that category, there is a wide range in speed with search durations ranging from 82 milliseconds for a 12 million gallery (for NEC-3) to more than 40 seconds (for Yitu-3, Toshiba-2) and even higher for less accurate algorithms.

D Some developers (Camvi, Dermalog, EverAL, Innovatrics, and Visionlabs) provide algorithms whose template search durations grow logarithmically i.e. approximately $I(N)=a \log N$ with the constant a varying between implementations. In the figure this model is fit using the point $T(1)=0$, and $T(640000)$. This very sublinear behaviour affords extremely fast search times in very large galleries, One caveat for the sublinear algorithms is that the fast-search data structures require considerable computation time - on the order of hours - for N in the millions, and this scales mildy super-linearly, i.e, $O\left(N^{b}\right), b>1$. There are exceptions: the Camvi algorithms take minutes; and Innvovatrics' scale sublinearly,

$2019 / 09 / 11$	FNIR $(N, R, T)=$	False neg. identification rate	$\mathrm{N}=$ Num. enrolled subjects	$\mathrm{T}=$ Threshold	$\mathrm{T}=0$
$17: 24: 52$	FFIR $(\mathrm{N}, \mathrm{T})=$	False pos. identification rate	$\mathrm{R}=$ Investigation		
	Fum. candidafes examined				

Figure 111：［Mugshot Dataset］Search duration vs．enrolled population size．In red are the actual point durations measured on a single c． 2016 core．The blue shows linear growth from $N=640000$ ．The green line shows logathmic growth from that point to $N=1600000$ ．Note the sublinear growth from algorithms from Camvi， Dermalog，EverAI，Innovatrics，and Visionlabs．The tiger＿1 algorithm is also sublinear，but inaccurate and inoperable at $N \geq 3000000$ ．This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast－search data structure is used．Note that search times are sometimes dominated by the template generation times shown in Table 16.

Figure 112: [Mugshot Dataset] Search duration vs. enrolled population Enrolied population size, In red are she actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N=640000$. The green line shows logathmic growth from that point to $N=1600000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger_1 algorithm is also sublinear, but inaccurate and inoperable at $N \geq 3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

Figure 113: [Mugshot Dataset] Search duration vs. enrolled population Enrolled population size, N N N red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N=640000$. The green line shows logathmic growth from that point to $N=1600000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger_1 algorithm is also sublinear, but inaccurate and inoperable at $N \geq 3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

Figure 114: [Mugshot Dataset] Search duration vs. enrolled population Enizolled population size, N N red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N=640000$. The green line shows logathmic growth from that point to $N=1600000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger_1 algorithm is also sublinear, but inaccurate and inoperable at $N \geq 3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16. $\begin{array}{r}\text { ZS:モて:LI } \\ \text { LI/60/6LOZ } \\ \hline\end{array}$

Figure 115: [Mugshot Dataset] Search duration vs. enrolled population Enrolled population size, N N N red are the actual point durations measured on a single c. 2016 core. The blue shows linear growth from $N=640000$. The green line shows logathmic growth from that point to $N=1600000$. Note the sublinear growth from algorithms from Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger-1 algorithm is also sublinear, but inaccurate and inoperable at $N \geq 3000000$. This capability sometimes comes at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated by the template generation times shown in Table 16.

Appendix H Gallery Insertion Timing

Figure 117: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12000000 . Generally, only the more accurate algorithms were run on galleries with N up to 12000000 .

References

[1] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
[2] L. Best-Rowden and A. K. Jain. Longitudinal study of automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1):148-162, Jan 2018.
[3] Blumstein, Cohen, Roth, and Visher, editors. Random parameter stochastic models of criminal careers. National Academy of Sciences Press, 1986.
[4] Thomas P. Bonczar and Lauren E. Glaze. Probation and parole in the united statesm 2007, statistical tables. Technical report, Bureau of Justice Statistics, December 2008.
[5] White D., Kemp R. I., Jenkins R., Matheson M, and Burton A. M. Passport officers errors in face matching. PLoS ONE, 9(8), 2014. e103510. doi:10.1371/journal. pone.0103510.
[6] P. Grother, G. W. Quinn, and P. J. Phillips. Evaluation of 2 d still-image face recognition algorithms. NIST Interagency Report 7709, National Institute of Standards and Technology, 8 2010. http:// face.nist.gov/mbe as MBE2010 FRVT2010.
[7] P. J. Grother, R. J. Micheals, and P. J. Phillips. Performance metrics for the frvt 2002 evaluation. In Proceedings of Audio and Video Based Person Authentication Conference (AVBPA), June 2003.
[8] Patrick Grother and Mei Ngan. Interagency report 8009, performance of face identification algorithms. Face Recognition Vendor Test (FRVT), May 2014.
[9] Patrick Grother, George Quinn, and Mei Ngan. Face in video evaluation (five) face recognition of noncooperative subjects. Interagency Report 8173, National Institute of Standards and Technology, March 2017. https://doi.org/10.6028/NIST.IR. 8173.
[10] Patrick Grother, George W. Quinn, and Mei Ngan. Face recognition vendor test - still face image and video concept, evaluation plan and api. Technical report, National Institute of Standards and Technology, 72013. http://biometrics.nist.gov/cs links/face/frvt/frvt2012/NIST FRVT2012 api Aug15.pdf.
[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, June 2016.
[12] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
[13] Masato Ishii, Hitoshi Imaoka, and Atsushi Sato. Fast k-nearest neighbor search for face identification using bounds of residual score. In 2017 12th IEEE International Conference on Automatic Face \& Gesture Recognition (FG 2017), pages 194-199, Los Alamitos, CA, USA, May 2017. IEEE Computer Society.
[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017.

[15] Ira Kemelmacher-Shlizerman, Steven M. Seitz, Daniel Miller, and Evan Brossard. The megaface benchmark: 1 million faces for recognition at scale. CoRR, abs/1512.00596, 2015.
[16] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016.
[17] Joyce A. Martin, Brady E. Hamilton, Michelle J.K. Osterman, Anne K. Driscoll, , and Patrick Drake. National vital statistics reports. Technical Report 8, Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, Division of Vital Statistics, November 2018.
[18] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In British Machine Vision Conference, 2015.
[19] P. Jonathon Phillips, Amy N. Yates, Ying Hu, Carina A. Hahn, Eilidh Noyes, Kelsey Jackson, Jacqueline G. Cavazos, Géraldine Jeckeln, Rajeev Ranjan, Swami Sankaranarayanan, Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa, David White, and Alice J. O'Toole. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences, 115(24):6171-6176, 2018.
[20] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.
[21] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
[22] Jeroen Smits and Christiaan Monden. Twinning across the developing world. PLOS ONE, 6(9):1-5,09 2011.
[23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumítru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.
[24] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '14, pages 1701-1708, Washington, DC, USA, 2014. IEEE Computer Society.
[25] A. Towler, R. I. Kemp, and D White. Unfamiliar face matching systems in applied settings. Nova Science, 2017.
[26] Working Group 3. Ed. M. Werner. ISO/IEC 19794-5 Information Technology - Biometric Data Interchange Formats - Part 5: Face image data. JTC1 :: SC37, 2 edition, 2011. http://webstore.ansi.org.
[27] David White, James D. Dunn, Alexandra C. Schmid, and Richard I. Kemp. Error rates in users of automatic face recognition software. PLoS ONE, 10:1-14, October 2015.
[28] Bradford Wing and R. Michael McCabe. Special publication 500-271: American national standard for information systems data format for the interchange of fingerprint, facial, and other biometric information part 1 . Technical report, NIST, September 2015. ANSI/NIST ITL 1-2015.
[29] Andreas Wolf. Portrait quality - (reference facial images for mrtd). Technical report, ICAO, April 2018.
[30] D. Yadav, N. Kohli, P. Pandey, R. Singh, M. Vatsa, and A. Noore. Effect of illicit drug abuse on face recognition. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1-7, Los Alamitos, CA, USA, mar 2016. IEEE Computer Society.

NISTIR 8280

Face Recognition Vendor Test (FRVT) Part 3: Demographic Effects

Patrick Grother
Mei Ngan
Kayee Hanaoka

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR. 8280

Face Recognition Vendor Test (FRVT) Part 3: Demographic Effects

Patrick Grother
Mei Ngan
Kayee Hanaoka
Information Access Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/ 10.6028/NIST.IR. 8280

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8280
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8280, 81 pages (December 2019) NatI. Inst. Stand. Technol. Interag. Intern. Rep. 8280, 81 pages (December 2019)

EXECUTIVE SUMMARY

OVERVIEW This is the third in a series of reports on ongoing face recognition vendor tests (FRVT) executed by the National Institute of Standards and Technology (NTST). The first two reports cover, respectively, the performance of one-to-one face recognition algorithms used for verification of asserted identities, and perfomance of one-to-many face recognition algorithms used for identification of individuals in photo data bases. This document extends those evalUations to document accuracy variations across demographic groups.

MOTIVATION The recent expansion in the availability, capability, and use of face recognition has been accompanied by assertions that demographic dependencies could lead to accuracy variations and potential bias. A report from Georgetown University [14] work noted that prior studies [22], articulated sources of bias, described the potential impacts particularly in a policing context, and discussed policy and regulatory implications. Additionally, this work is motivated by studies of demographic effects in more recent face recognition $[9,16,23]$ and gender estimation algorithms $[5,36]$.

AIMS AND NIST has conducted tests to quantify demographic differences in contemporary face recogSCOPE nition algorithms. This report provides details about the recognition process, notes where demographic effects could occur, details specific performance metrics and analyses, gives empirical results, and recommends research into the mitigation of performance deficiencies.
NIST intends this report to inform discussion and decisions about the accuracy, utility, and limitations of face recognition technologies. Its intended audience includes policy makers, face recognition algorithm developers, systems integrators, and managers of face recognition systems concerned with mitigation of risks implied by demographic differentials.

WHAT WE DID The NIST Information Technology Laboratory (ITL) quantified the accuracy of face recognition algorithms for demographic groups defined by sex, age, and race or country of birth.

We used both one-to-one verification algorithms and one-to-many identification search algorithms. These were submitted to the FRVT by corporate research and development laboratories and a few universities. As prototypes, these algorithms were not necessarily available as mature integrable products. Their performance is detailed in FRVT reports [16, 17].

We used these algorithms with four large datasets of photographs collected in U.S. governmental applications that are currently in operation:

- Domestic mugshots collected in the United States.
\triangleright Application photographs from a global population of applicants for immigration benefits.
D. Visa photographs submitted in support of visa applicants.
\triangleright Border crossing photographs of travelers entering the United States.

All four datasets were collected for authorized travel, immigration or law enforcement processes. The first three sets have good compliance with image capture standards. The last set does not, given constraints on capture duration and environment. Together these datasets allowed us to process a total of 18.27 million images of 8.49 million people through 189 mostly commercial algorithms from 99 developers.

The datasets were accompanied by sex and age metadata for the photographed individuals, The mugshots have metadata for race, but the other sets only have country-of-birth information. We restrict the analysis to 24 countries in 7 distinct global regions that have seen lower levels of long-distance immigration. While country-of-birth information may be a reasonable proxy for race in these countries, it stands as a meaningful factor in its own right particularly for travel-related applications of face recognition.

The tests aimed to determine whether, and to what degree, face recognition algorithms differed when they processed photographs of individuals from various demographics. We assessed accuracy by demographic group and report on false negative and false positive effects. False negatives are the failure to associate one person in two images; they occur when the similarity between two photos is low, reflecting either some change in the person's appearance or in the image properties. False positives are the erroneous association of samples of two persons; they occur when the digitized faces of two people are similar.
In background material that follows we give examples of how algorithms are used, and we elaborate on the consequences of errors noting that the impacts of demographic differentials can be advantageous on disadvantageous depending on the application.

WHAT WE The accuracy of algorithms used in this report has been documented in recent FRVT evalFOUND uation reports $[16,17]$. These show a wide range in accuracy across developers, with the most accurate algorithms producing many fewer errors. These algorithms can therefore be expected to have smaller demographic differentials.
Contemporary face recognition algorithms exhibit demographic differentials of various magnitudes. Our main result is that false positive differentials are much larger than those related to false negatives and exist broadly, across many, but not all, algorithms tested. Across demographics, false positives rates often vary by factors of 10 to beyond 100 times. False negatives tend to be more algorithm-specific, and vary often by factors below 3 .

D False positives: Using the higher quality Application photes, false positive rates are highest in West and East African and East Asian people, and lowest in Eastern European individuals. This effect is generally large, with a factor of 100 more false positives between countries. However, with a number of algorithms developed in China this effect is reversed, with low false positive rates on East Asian faces. With domestic law enforcement images, the highest false positives are in American Indians, with elevated rates in African American and Asian populations; the relative ordering depends on sex and varies with algorithm.
We found false positives to be higher in women than men, and this is consistent across algorithms and datasets. This effect is smaller than that due to race.
We found elevated false positives in the elderly and in children; the effects were larger in the oldest and youngest, and smallest in middle-aged adults.

- False negatives: With domestic mugshots, false negatives are hígher in Asian and American Indian individuals, with error rates above those in white and African American faces (which yield the lowest false negative rates). However, with lower-quality border crossing images, false negatives are generally higher in people born in Africa and the Caribbean, the effect being stronger in older individuals. These differing results relate to image quality: The mugshots were collected with a photographic setup specifically standardized to produce high-quality images across races; the border crossing images deviate from face image quality standards.
In cooperative access control applications, false negatives can be remedied by users making second attempts.

The presence of an enrollment database affords one-to-many identification algorithms a resource for mitigation of demographic effects that purely one-to-one verification systems do not have. Nevertheless, demographic differentials present in one-to-one verification algorithms are usually, but not always, present in one-to-many search algorithms. One important exception is that some developers supplied highly accurate identification algorithms for which false positive differentials are undetectable.

More detailed results are introduced in the Technical Summary.
Implications Operational implementations usually employ a single face recognition algorithm. Given of these algorithm-specific variation, it is incumbent upon the system owner to know their algoTESTS rithm. While publicly available test data from NIST and elsewhere can inform owners, it will usually be informative to specifically measure accuracy of the operational algorithm on the operational image data, perhaps employing a biometrics testing laboratory to assist.

Since different algorithms perform better or worse in processing images of individuals in various demographics, policy makers, face recognition system developers, and end users should be aware of these differences and use them to make decisions and to improve future performance. We supplement this report with more than 1200 pages of charts contained in seventeen annexes that inclucle exhaustive reporting of results for each algorithm. These are intended to show the breadth of the effects, and to inform the algorithm developers.
There are a variety of techniques that might mitigate performance limitations of face recognition systems performance issues overall and specifically those that relate to demographics. This report includes recommendations for research in developing and evaluating the value, costs, and benefits of potential mitigation techniques - see sections 8 and 9 .

Reporting of demographic effects often has been incomplete in academic papers and in media coverage. In particular, accuracy is discussed without stating the quantity of interest be it false negatives, false positives or failure to enroll. As most systems are configured with a fixed threshold, it is necessary to report both false negative and false positive rates for each demographic group at that threshold. This is rarely done-most reports are concerned only with false negatives. We make suggestions for augmenting reporting with respect to demographic difference and effects.

BACKGROUND: ALGORITHMS, ERRORS, IMPACTS

FACE
ANALYSIS: CLASSIFICATION, ESTIMATION, RECOGNITION

Before presenting results in the Technical Summary we describe what face recognition is, contrasting it with other applications that analyze faces, and then detail the errors that are possible in face verification and identification and their impacts.
Much of the discussion of face recognition bias in recent years cites two studies $[5,36]$ showing poor accuracy of face gender classification algorithms on black women. Those studies did not evaluate face recognition algorithms, yet the results have been widely cited to indict their accuracy. Our work was undertaken to quantify analogous effects in face recognition algorithms. We strongly recommend that reporting of bias should include information about the class of algorithm evaluated. We use the term face analysis as an umbrella for any algorithm that consumes face images and produces some output. Within that are estimation algorithms that output some continuous quantity (e.g., age or degree of fatigue). There are classification algorithms that aim to determine some categorical quantity such as the sex of a person or their emotional state. Face classification algorithms are built with inherent knowledge of the classes they aim to produce (e.g., happy, sad). Face recognition algorithms, however, have no built-in notion of a particular person. They are not built to identify particular people; instead they include a face detector followed by a feature extraction algorithm that converts one or more images of a person into a vector of values that relate to the identity of the person. The extractor typically consists of a neural network that has been trained on ID-labeled images available to the developer. In operations, they act as generic extractors of identity-related information from photos of persons they have usually never seen before, Recognition proceeds as a differential operator: Algorithms compare two feature vectors and emit a similarity score. This is a vendor-defined numeric value expressing how similar the parent faces are. It is compared to a threshold value to decide whether two samples are from, or represent, the same person or not. Thus, recognition is mediated by persistent identity information stored in a feature vector (or "template"). Classification and estimation, on the other hand, are single-shot operations from one sample alone, employing machinery that is different from that used for face recognition.

VERIFICATION Errors: A comparison of images from the same person yields a genuine or "mate" score, A comparison of images from different people yields an imposter or "nonmate" score. Ideally, nonmate scores should be low and mate scores should be high. In practice, some imposter scores are above a numeric threshold giving false posilives, and some genuine comparisons yield scores below threshold giving false negatives.

Applications: One-to-one verification is used in applications including logical access to a phone or physical access through a security check point. It also supports non-repudiation e.g. to authorize the dispensing of a prescription drug. Two photos are involved: one in the database that is compared with one taken of the person seeking access to answer the question: "Is this the same person or not?"

Impact of errors: Errors have different implications for the system owner and for the individual whose photograph is being used, depending upon the application. In verification applications, false negatives cause inconvenience for the user. For example, an individual may not be able to get into their phone or they are delayed entering a facility or crossing a border. These errors can usually be remediated with a second attempt. False positives, on the other hand, present a security concern to the system owner, as they allow access to imposters.

[^8]IDENT- Identification algorithms, referred to commonly as one-to-many or "1-to- $\mathrm{N}^{\prime \prime}$ search algoIFICATION rithms, notionally compare features extracted from a search "probe" image with all feature vectors previously enrolled from "gallery" images. The algorithms return either a fixed number of the most similar candidates, or only those that are above a preset threshold. A candidate is an index and a similarity score. Some algorithms execute an exhaustive search of all N enrollments and a sort operation to yield the most similar. Other algorithms implement "fast-search" techniques $[2,19,21,26]$ that avoid many of the N comparisons and are therefore highly economical [17].
Identification applications: There are two broad uses of identification algorithms. First, they can be used to facilitate positive access like in one-to-one verification but without presentation of an identity claim. For example, a subject is given access to a building solely on the basis of presentation a photograph that matches any enrolled identity with a score above threshold. Second, they can be used for so-called negative identification where the system operator claims implicitly that searched individuals are not enrolled - for example, checking databases of gamblers previously banned from a casino.

Impacts: As with verification, the impact of a demographic differential will depend on the application. In one-to-many searches, false positives primarily occur when a search of a subject who is not present in the database yields a candidate identity for human review. This type of "one to many" search is often employed to check for a person who might be applying for a visa or driver's license under a name different than their own. Ealse positives may also occur when a search of someone who is enrolled produces the wrong identity with, or instead of, the correct identity. Identification algorithms produce such outcomes when the search yields a comparison score above a chosen threshold.
In identification applications such as visa or passport fraud detection, or surveillance, a false positive match to another individual could lead to a false accusation, detention or deportation. Higher false negatives would be an advantage to an enrollee in such a system, as their fraud would go undetected, and a disadvantage to the system owner whose security goals will be undermined.

Investigation: This is a special-case application of identification algorithms where the threshold is set to zero so that all searches will produce a fixed number of candidates. In such cases, the false positive identification rate is 100% because any search of someone not in the database will still yield candidates. Algorithms used in this way are part of a hybrid machinehuman system: The algorithm offers up candidates for human adjudication, for which labor must be available. In such cases, false positive differentials from the algorithm are immaterial -the machine returns say 50 candidates regardless. What matters then is the human response, and the evidence there ie for both poor [10, 42] and varied human capability, even without time constraints [34], and sex and race performance differentials, particularly an interaction between the reviewer's demographics with those of the photographs under review [7]. The interaction of machine and human is beyond the scope of this report, as is human efficacy.

TECHNICAL SUMMARY

This section summarizes the results of the study. This is preceded by an introduction to terminology and discussion of a vital aspect in reporting demographic effects, namely that it is necessary to report both false negative and false positive error rates.

ACCURACY When similarity scores are computed over a collection of images from demographic \mathbf{A} (say DIFFER ENTIALS elderly Asian men) they may be higher than from demographic B (say young Asian women).

We adopt terminology from a Department of Homeland Security Science and Technology Directorate article [20] and define differential performance as a "difference in the genuine or imposter [score] distributions". Such differentials are inconsequential unless they prompt a differential outcome. An outcome occurs when a score is compared with an operatordefined threshold. A genuine score below threshold yields a false negative outcome, and an imposter score at or above threshold, a false positive outcome. The subject of this report is to quantify differential outcomes between demographics. The term demographic differential is inherited from an ISO techuical report [6] now under development.

FIXED A crucial point in reasoning about differentials is that the vast majority of biometric sysTHRESHOLD operation

RESULTS We found empirical evidence for the existence of demographic differentials in the majority of overview contemporary face recognition algorithms that we evaluated. The false positive differentials are much larger than those related to false negatives. False positive rates often vary by one or two orders of magnitude (i.e., 10x, 100x). False negative effects vary by factors usually much less than 3. The false positive differentials exist broadly, across many, but not all, algorithms. The false negatives tend to be more algorithm-specific. Research toward mitigation of differentials is discussed in sections 9 and 8 .
The accuracy of algorithms used in this report has been documented in recent FRVT evaluation reports $[16,17]$. These show a wide range in accuracy across algorithm developers, with the most accurate algorithms producing many fewer errors than lower-performing variants. More accurate algorithms produce fewer errors, and will be expected therefore to have smaller demographic differentials.

FALSE With regard to false negative demographic differentials we make the observations below. Note that in real-time cooperative applications, false negatives can often be remedied by making second attempts.
\triangleright False negative error rates vary strongly by algorithm, from below 0.5% to above 10%. For the more accurate algorithms, false negative rates are usually low with average demographic differentials being, necessarily, smaller still. This is an important result: use of inaccurate algorithms will increase the magnitude of false negative differentials. See Figure 22 and Annex 12.
b In domestic mugshots, false negatives are higher in Asian and American Indian individuals, with error rates above those in white and black faces. The lowest false negative rates occur in black faces. This result might not be related to race - it could arise due to differences in the time elapsed between photographs because ageing is highly influential on face recognition false negatives. We will report on that analysis going forward. See Figure 17.
Δ False negative error rates are often higher in women and in younger individuals, particularly in the mugshot images. There are many exceptions to this, so universal statements pertaining to algorithms false negative rates across sex and age are not supported.

D When comparing high-quality application photos, error rates are very low and measurement of false negative differentials across demographics is difficult. This implies that better image quality reduces false negative rates and differentials. See Figure 22.

- When comparing high-quality application images with lower-quality border crossing images, false negative rates are higher than when comparing the application photos. False negative rates are often higher in recognition of women, but the differentials are smaller and not consistent. See Figure 21.
b. In the border crossing images, false negatives are generally higher in individuals borm in Africa and the Caribbean, the effect being stronger in older individuals. See Figure 18.

FALSE Verification Algorithms: With regard to false positive demographic differentials we make

POSITIVES

 the following observations.b We found false positives to be between 2 and 5 times higher in women than men, the multiple varying with algorithm, country of origin and age. This increase is present for most algorithms and datasets. See Figure 6.
D. With respect to race, false positive rates are highest in West and East African and East Asian people (but with exceptions noted next). False positive rates are also elevated but slightly less so in South Asian and Central American people. The lowest false positive rates generally occur with East European individuals. See Figure 5.
\triangleright A number of algorithms developed in China give low false positive rates on East Asian faces, and sometimes these are lower than those with Caucasian faces. This observation that the location of the developer as a proxy for the race demographics of the data they used in training - matters was noted in 2011 [33], and is potentially important to the reduction of demographic differentials due to race and national origin.

Links: $\begin{aligned} & \text { Exec. Summary } \\ & \text { Tech, Summary }\end{aligned}$	False positive: Incorrect association of two subjects	$1: 1 \mathrm{FMR}$	1NFPIR	$\mathrm{T} \gg 0$	$\rightarrow \mathrm{PMR}, \mathrm{FPRR} \rightarrow 0$

- We found elevated false positives in the elderly and in children; the effects were larger in the oldest adults and youngest children, and smallest in middle aged adults. The effects are consistent across country-of-birth, datasets and algorithms but vary in magnitude, See Figure 14 and Figure 15.
- With mugshot images, the highest false positives are in American Indians, with elevated rates in African American and Asian populations; the relative ordering depends on sex and varies with algorithm. See Figure 12 and Figure 13.

Identification Algorithms: The presence of an enrollment database affords one-to-many algorithms a resource for mitigation of demographic effects that purely one-to-one verification systems do not have. We note that demographic differentials present in one-to-one verification algorithms are usually, but not always, present in one-to-many search algorithms. See Section 7.

One important exception is that some developers supplied identification algorithms for which false positive differentials are undetectable. Among those is Idemia, who publicly described how this was achieved [15]. A further algorithm, NEC-3, is on many measures, the most accurate we have evaluated. Other developers producing algorithms with stable false positive rates are Aware, Toshiba, Tevian and Real Networks. These algorithms also give false positive identification rates that are approximately independent of the size of enrollment database. See Figure 27.

PRIOR WORK This report is the first to describe demographic differentials for identification algorithms. There are, however, recent prior tests of verification algorithms whose results comport with ours regarding demographic differentials between races.
Δ Using four verification algorithms applied to domestic mugshots, the Florida Institute of Technology and its collaborators showed [23] simullaneously elevated false positives and reduced false negatives in African Americans vs. Caucasians.

- Cavazos et al. [8] applied four verification algorithms to GBU challenge images [32] to show order-of-magnitude higher false positives in Asians vs. Caucasians. The paper articulates five lessons related to measurement of demographic effects.
\triangleright In addition, a recent Department of Homeland Security (DHS) Science and Technology / SAIC study [20] using a leading commercial algorithm showed that pairing of imposters by age, sex and race gives false positive rates that are two orders of magnitude higher than by pairing individuals randomly,
\square On an approximately monthly schedule starting in 2017, NIST has reported [16] on demographic effects in one-to-one verification algorithms submitted to the FRVT process. Those tests employed smaller sets of mugshot and visa photographs than are used here.

WHAT WE DID This report establishes context, gives results and impacts, and discusses additional research NOT DO that can support mitigation of observed deficiencies. It does not address the following:

- Training of algorithms: We did not train algorithms. The prototype algorithms submitted to NIST are fixed and were not refined or adapted. This reflects the usual operational situation in which face recognition systems are not adapted on customers local data. We did not attempt, or invite developers to attempt, mitigation of demographic differentials by retraining the algorithms on image sets maintained at NIST. We simply ran the tests using algorithms as submitted.
- Analyze cause and effect: We did not make efforts to explain the technical reasons for the observed results, nor to build an inferential model of them. Specifically, we have not tried to relate recognition errors to skin tone or any other phenotypes evident in faces in our image sets. We think it likely that modeling will need richer sets of covariates than are available. In particulat, efforts to estimate skin tone and other phenotypes will involve an algorithm that itself may exhibit demographic differentials.
We did not yet pursue regression approaches due to the volume of data, the number of algorithms tested, and the need to model each recognition algorithms separately, as they are built and trained independently. Due to their ability to handle imbalanced data, we note, however, the utiltity of mixed effects models $[3,4,9]$ previously developed for explaining recognition failure. Such approaches can use subject-specific variables (age, sex, race, etc.) and image-specific variables (contrast, brightness, blur, uniformity, etc.). Models are often useful, even though it is inevitable that germane quantities will be unavailable to the analysis.
\square Consider the effect of cameras: The possible role of the camera, and the subject-camera interaction, has been detailed recently [9]. This is particularly important when standardscompliant photography is not possible, or not intended, for example, in high throughput access control. Without access to human-camera interaction data, we do not report on quantities like satisfaction, difficulty of use, and failure to enroll. Along these lines, it has been suggested [41] that NIST's tests using standards-compliant images "don't translate to everyday scenarios".
In fact, we note demographic effects even in high-quality images, notably elevated false positives. Additionally, we quantify false negatives on a border crossing dataset which is collected at a different point in the trade space between quality and speed than are our other three mostly high-quality portrait datasets.
Finally, some governmental organizations dedicated resources to advancing standards so that the "real-worlc" images in their applications are high-quality portraits. For example, the main criminal justice application is supported by the FBI and others being proactive in the 1990 s in establishing portrait capture standards, and then promulgating them.

D Use wild images: We did not use image data from the Internet nor from video surveillance. This report does not capture demographic differentials that may occur in such photographs.

Links: Esec. Summary Tece summarer	False positive: Incorrect association of two subjects False negative: Failed association of one subject	$\begin{aligned} & 1: 1 \mathrm{FMR} \\ & 1: 1 \mathrm{FNM} \end{aligned}$	$\begin{aligned} & \text { 1:N FPRR } \\ & 1: N ~ F N T R \end{aligned}$	$T \geqslant>0$	$\begin{aligned} & \rightarrow \text { FMR FPRR } \rightarrow 0 \\ & \rightarrow \text { FNMR, ENRR } \rightarrow 1 \end{aligned}$

RESEARCH

We now discuss research germane to the quantification, handling and mitigation of demographic differentials.

Testing: Since 2017 NTST has provided demographic differential data to developers of one-to-one verification algorithms. Our goal has been to encourage developers to remediate the effects. While that may have happened in some cases, a prime incentive for a developer when participating in NTST evaluations is to reduce false negatives rates globally. Going forward, we plan to start reporting accuracy that pushes developers to produce approximately equal false positive rates across all demographics.
Mitigation of false positive differentials: With adequate research and development, the following may prove effective at mitigating demographic differentials with respect to false positives: Threshold elevation, refined training, more diverse training data, discovery of features with greater discriminative power - particularly techniques capable of distinguishing between twins - and use of face and iris as a combined modality. These are discussed in section 9. We also discuss, and discount, the idea of user-specific thresholds.
Mitigation of false negative differentials: False negative error rates, and demographic differentials therein, are reduced in standards-compliant images. This motivates the suggestions of further research into image quality analysis, face-aware cameras and improved standards-compliance discussed in section 8.

Policy research: The degree to which demographic differentials could be tolerated has never been formally specified in any biometric application. Any standard directed toward limiting allowable differentials in the automated processing of digitized biological characteristics might weigh the actual consequences of differentials which are strongly application dependent.
reporting of Reporting of demographic effects has been incomplete, in both academic papers and in meDEMOGRAPHIC dia coverage. In particular, accuracy is discussed without specifying, particularly, false posiEFFECTS tives or false negatives. We therefore suggest that reports covering demographic differentials should describe:

D The purpose of the system - initial enrollment of individuals into a system, identity verification or identification:
v. The stage at which the differential occurred - at the camera, during quality assessment, in the detection and feature extraction phase, or during recognition;

- The relevant metric: false positive or false negative occurrences during recognition, failures to enroll, failed detections by the camera, for example;
\triangleright Any differentials in duration of processes or difficulty in using the system;
D Any known information on recognition threshold value, whether the threshold is fixed, and what the target false positive rate is;
- Which demographic group has the elevated failure rates - for example by age, sex, race, height, or in some intersection thereof; and
- Consequences of any error, if known, and procedures for error remediation.

Links: Exec Summary	False positive: Incorrect association of two subjects False negative: Failed association of one subject	1:1 FMR	1/NFPRR 1:N FNIR	$T \gg 0$	$\begin{aligned} & \rightarrow \text { FMR FPRR } \rightarrow 0 \\ & \rightarrow \text { FNMRR FNIR } \rightarrow 1 \end{aligned}$

ACKNOWLE- The authors are grateful to Yevgeniy Sirotin and John Howard of SAIC at the Maryland Test DGMENTS

DISCLAIMER Specific hardware and software products identified in this report were used in order to perform the evaluations described in this document. In no case does identification of any commercial product, trade name, or vendor, imply recommendation or endorsement by the $\mathrm{Na}-$ tional Institute of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best available for the purpose. Developers participating in FRVT grant NIST permission to publish evaluation results.

Abstract

ANNEXES We supplement this report with more than 1200 pages of charts contained in 17 Annexes which include exhaustive reporting of results for each algorithm. These are intended to show the breadth of the effects and to inform the algorithms' developers. We do not take averages over algorithms, for example the average increase of false match rate in women, because averages of samples from different distributions are seldom meaningful (by analogy, taking the average of temperatures in Montreal and Miami). Applications typically employ just one algorithm, so averages and indeed any statements purporting to summarize the entirety of face recognition will not always be correct.

The annexes to this report are listed in Table 1. The first four detail the datasets used in this report. The remaining annexes contain more than 1200 pages of automatically generated graphs, usually one for each algorithm evaluated. These are intended to show the breadth of the effects, and to inform the algorithms' developers.

\#	CATEGORY		DATASET	CONTENT
Arutex 1	Datasets		Mugshot	Description and examples of images and metadata: Mugshots
Arriex 2	Datasets		Application	Description and examples of images and metadata: Application portraits
Annex 3	Datasets		Visa	Description and examples of images and metadata: Visa portraits
Annex 4	Datasets		Border crossing	Description and examples of images and metadatat Border crossing photos
Annex 5	Results	1:1	Application	False match rates for demographically matched impostors
Armex 6	Results	1.1	Mugshot	Cross-race and sex false match rates in United States magshot images
Amiex 7	Results	$1: 1$	Application	Cross-race and sex false match rates in worldwide application images
Annex 8	Results	1:1	Application	False match rates with matched demographics using application images
Armex 9	Results	1:1	Application	Cross-age false match rates with application photos
Annex 10	Results	1:1	Visa	Cross age false match rates with visa photos
Annex 11	Results	1.1	Mugshot	Cross age and country with application photos
Annex 12.	Results	$1: 1$	Mugshot	Error tradeoff characteristics with United States mugshots
Annex 13	Results	$1: 1$	Mugshot	False negative rates in United States mugshot images by sex and race
Annex 14	Results	1:1	Mugshot	False negative rates by countiy for global application and border crossing photos
Annex 15	Results	1.1	Mugshot	Genuine and impostor score distributions for United States mugshots
Armex 16	Results	1:N	Mugshot	Identification error characteristics by race and sex
Annex 17	Results	1:N	Mugshot	Candidate list score magnitudes by sex and race

Table 1: Anrexes and their content.

TERMS AND DEFINITIONS

The following table defines common terms appearing in this document. A more complete, consistent biometrics vocabulary is available as ISO /IEC 2382 Part 37.

Contents

Acknowledgements 11
Disclaimer 11
Terms and definitions 12
1 Introduction 14
2 Prior work 18
3 Performance metrics 20
4 False positive differentials in verification 28
5 False negative differentials in verification 53
6 False negative differentials in identification 61
7 False positive differentials in identification 66
8 Research toward mitigation of false negatives 70
9 Research toward mitigation of false positives 71

| Links. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EXEC. SUMMARY |
| TECH. SUMMARY |\quad| False positive: Incorrect association of two subjects | 1:1 FMR | 1:N FPIR |
| :--- | :--- | :--- |
| False negative: Failed association of one subject | 1:1 FNMR | 1:N FNRR |

Figure 1: The figure is intended to show possible stages in a face recognition pipeline at which demographic differentials could, in principle, arise. Note that none of these stages necessarily includes algorithms that may be labelled artificial intelligence, though typically the detection and feature extraction modules are AI-based now.

1 Introduction

Over the last two years there has been expanded coverage of face recognition in the popular press. In some part this is due to the expanded capability of the algorithms, a larger number of applications, lowered barriers to algorithm development ${ }^{1}$, and, not least, reports that the technology is somehow biased. This latter aspect is based on Georgetown [14] and two reports by MIT [5,36]. The Georgetown work noted prior studies [22] articulated sources of bias, and described the potential impacts particularly in a policing context, and discussed policy and regulatory implications. The MIT work did not study face recognition, instead it looked at how well publidy accessible cloud-based estimation algorithms can determine gender from a single image. The studies have widely cited as evidence that face recognition is biased.

This stems from a confusion in terminology: Face classification algorithms, of the kind MIT reported on, accept one face image sample and produce an estimate of age, or sex, or some other property of the subject. Face recognition algorithms, on the other hand, operate as differential operators: They compare identity information in features vectors extract from two face image samples and produce a measure of similarity between the two, which can be used to answer the "question same person or not?". Face algorithms, both one-to-one identity verification and one-to-many search algorithms, are built on this differential comparison. The salient point, in the demographic context, is that one or two people are involved in a comparison and, as we will see, the age,

[^9]| Links: | Exbc. Summatay | False positive: Incorrect association of two subjects | 1:1 FMR | 1N FPIR | $T \gg 0$ | \rightarrow FMR ${ }^{\text {FPIR }} \rightarrow$ Q |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Links: | TEcf. Summarer | False negative: Failed association of one subject | 1:1 FNMR | 1:N ENIR | | \rightarrow FNMR, FNIR $\rightarrow 1$ |

sex, race and other demographic properties of both will be material to the recognition outcome.
The MIT reports nevertheless serve as a cautionary tale in two respects. First, that demographic group membership can have a sizeable effect on algorithms that process face photographs; second, that algorithm capability varies considerably by developer.

1.1 Potential sources of bias in face recognition systems

Lost in the diseussion of bias is specificity on exactly what component of the process is at fault. Accordingly, we introduce Figure 1 to show that a face recognition system is composed of several parts. The figure shows a notional face recognition pipeline consisting of a capture subsystem, primarily a camera, followed by a presentation attack detection (PAD) module intended to detect impersonation attempts, a quality acceptance (QA) step aimed at checking portrait standard compliance, then the recognition components of feature extraction and $1: 1$ or $1: \mathrm{N}$ comparison, the output of which may prompt human involvement. The order of the components may be different in some systems, for example the QA component may be coupled to the capture process and would precede PAD. Some components may not exist in some systems, particularly the QA and PAD functions may not be necessary.

The Figure shows performance metrics, any of which could notionally have a demographic differential. Errors at one stage will generally have downstream consequences. In a system where subjects make cooperative presentation to the camera, a person could be rejected in the early stages before recognition itself. For example, a camera equipped with optics that have too narrow a field of view could produce an image of a tall individual in which in which the top part of the head was cropped. This could cause rejection at almost any stage and a system owner would need to determine the origin of errors.

1.2 The role of image quality

Recent research [9] has shown that cameras can have an effect on a generic downstream recognition engine. A poor image can undermine detection or recognition, and it is possible that certain demographics yield photographs ill-suited to face recognition e.g. young children [28], or very tall individuals. As pointed out above there is potential for demographic differentials to appear at the capture stage, that is when only a single image is being collected before any comparison with other images. Demographic differentials that occur during collection could arise from (at least) inadequacies of the camera, from the environment or "slage", and from client-side detection or quality assessment algotithms. Note that manifestly poor (and unrecognizable) images can be collected from mis-configured cameras, without any algorithmic or AI culpability. Indeed, after publication of the MIT studies $[5,36]$ on bias in gender-estimation algorithms, suspicion fell upon the presence of poor

	Exec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1NNFPIR	$T \gg 0$	\rightarrow FMR FPIR $\rightarrow 0$
Links:	Tecer Summairs	False negative: Failed association of one subject	1:1 FNMR	1:N FNTR		\rightarrow FNMR, FNIR -1

photographs, due to under-exposure of dark-skinned individuals in that dataset. An IBM gender estimation algorithm had been faulted in the MIT study; in response, and previously, IBM has been active in addressing AI bias. Relevant here is that it produced a better algorithm ${ }^{2}$, and examined whether skin tone itself drove gender classification accuracy [30,31] - in short, "skin type by itself has a minimal effect on the classification decision".

False negatives occur in biometric systems when samples from one individual yield a comparison score below a threshold. This will occur when the features extracted from two input photographs are insufficiently similar. Recall that face recognition is implemented as a differential operator: two samples are analyzed and compared. So a false negative occurs when two from the same face appear different to the algorithm.

It is very common to attribute false negatives to factors such as pose, illumination and expression so much so that dedicated databases have been built up to support development of algorithms with immunity to such ${ }^{3}$. Invariance to such "nuisance" factors has been the focus of the bulk of face recognition research for more two decades. Indeed over the last five years there have been great advances in this respect due to the adoption of deep convolutional neural networks which demonstrate remarkable tolerance to very sub-standard photographs i.e. those that deviate from formal portrait standards most prominently ISO/IEC 39794-5 and its law-enforcement equivalent ANSI/NIST ITL 1-2017.

However, here we need to distinguish between factors that are expected to affect one photo in a mated pair due to poor photography (e.g. mis-focus), poor illumination (e.g. too dark), and poor presentation (e.g. head down) - and those that would affect both photographs over time, potentially including properties related to demographics.

1.3 Photographic Standards

In the late 1990s the FBI asked NIST to establish photographic best-practices for mugshot collection ${ }^{4}$. This was done to guide primarily state and local police departments in the capture of photographs that would support forensic (i.e. human) review. It occurred more than a decade before the FBI deployed automated face recognition. That standardization work was conducted in anticipation of digital cameras ${ }^{5}$ being available to replace film cameras that had been used for almost a century. The standardization work included consideration of cameras, lights and geometry ${ }^{6}$. There was explicit consideration of the need to capture images of both dark and light skinned individuals, it being understood that it is relatively easy to produce photographs for which

[^10]
large areas of dark or bright pixels can render detection of anatomical features impossible.
Face recognition proceeds as a differential operation on features extracted from two photographs. Accuracy can be undermined by poor photography/illumination/presentation and by differences in those i.e. any change in the digital facial appearance. Of course an egregiously underexposed photograph will have insufficient information content, but two photographs taken with even moderately poor exposure can match, and leading contemporary algorithms are highly tolerant of quality degradations.

1.4 Age and ageing

Ageing will change appearance over decades and will ultimately undermine automated face recognition ${ }^{7}$. In the current study, we don't consider ageing to be a demographic factor because it is a slow, more-or-less graceful ${ }_{k}$ process that happens to all of us. However, there is at least one demographic group that ages more quickly than others - children - who are disadvantaged in many automated border control systems either by being excluded by policy, or by encountering higher false negatives. Age itself is a demographic factor as accuracy in the elderly and the young differ for face recognition (usually) and also for fingerprint authentication. This applies even without significant time lapse between two photographs.

Clearly injury or disease can change appearance on very short timescales, so such factors should be excluded, when possible, from studies dedicated to detection of broad demographic effects. Development of equipment and algorithms, and studies thereof, that are dedicated to the inclusive use of biometrics are valuable of course - for example recognition of photosensitive subjects wearing sunglasses, or finger amputees presenting fingerprints.

[^11]

\#	GOURCE	IMAGE	NUMEER OP		Drseussion
			stmiects	IMACES	
1	Cavazoset al. [8] at UT Dallas	Notre Dame GBU [32] portraits	389	<1085	The study showed order-of-magnitude elevations in false positive rates in university volunteer Asian vs. Caucasian faces. The study reported FMR(T). As the study showed neither $\operatorname{FNMR}(T)$ nor linked error tradeoff characteristics the false negative differential is not apparent. It discusses the effect of "yoking" i.e the pairing of imposters by sex and race, It deprecates area-under-the-curve (AUC). The study used two related algorithnis from the University of Maryland, one open-source algorithm [38], and one older inaccurate pre-DCNN algorithm.
2	Krishnaprixa et al. [23) at Florida Inst. Tech	Operational mugshots: Morph db [37]	10350 African Am. * 2769 Can- casians	42620 African Am. + 10611 Cat- casians	The study reported: order-of-magnitude elevated false positives in African Americans vs. Caucasians; lower false negative rates in African Americans; and reduced differentials in higher quality images [23,22]. That study used three open-source algorithms, and one conmercial algorithm, Two of the open-source algorithms are quite inaccurate and not representative of conmercial deploymetit, Importantly, the study also noted the inadequacies of error tradeoff characteristics for documenting fixed-threshold demographic differentials.
3	Howard et al. [20] at SAIC/MATE with DHS S\&T	Lab collected, adult volunteers [9]	363	-	The study establish useful definitions for "differential performance" and "differential outcome" and for broad and narrow heterogeneity of imposter distributions. It showed order-of-magnitude variation in false positive rates with age, sex and race, establishing an information gain approach to formally ordering their effect. The study employed images from 11 capture devices, and applied one leading commercial verification algorithm,

Table 2: Prior studies.

2 Prior work

All prior work relates to one-to-one verification algorithms. This report, in contrast, includes results for many recent, mostly commercial, algorithms implementing both verification and identification.

Except as detailed below, this report is the first to properly report and distinguish between false positive and false negative effects, something that is often missing in other reports.

The broad effects given in this report concerning age and sex have been known as far back as 2003 [35]. Since 2017, our ongoing FRVT report [16] has reported large false positive differential across sex, age and race.

Tables 2 and 3 summarize recent work in demographic effects in automated face recognition.

4	SOUREE	IMAGE	NTMBER PF		DISCuEston
			SUPTECTS	IMACES	
4	Cook et al. [9] at SAIC/MATE with DHS Sist	Lab collected, adult volunteers	525		The study deployed mixed-effects regression models to examine dependence of gemuine similarity scores on sex, age, height, eyewear, skin reflectance and on capture device. The report displayed markedly different images of the same people from different capture devices, showing potential for the camera to induce demographic differential performance. The study found lower sinularity scores in those identifying as Black or African American, comporting with [22] but contrary to the best ageing study [3], The study also showed that comparison of samples collected on the same day have different demographic differentials than those collected up to four years apart, in particular that women give lower genuine scores than men with time separation, Same-day biometrics ave useful for short-term recognition applications like transit through an airport.
5	El Khiyari et al. [13]	Operational miggshots: Morph db [37]	724 adult, balanced on race + sex	$2896=$ 1448 each African $\mathrm{Am},+$ Call- casians, balanced on sex	The paper used a subset of the MORPH database with two algorithms([38], modified and one COTS to show better verification ervor rates in the men, the elderly, and in whites. The study should be discounted for two reasons: First the al gorithms give high error rates at very modest false match rates: the best $\mathrm{FNMR}=0.06$ at $\mathrm{MMR}=0.01$. Second the paper reports FNMR at fixed FMR , not at fixed thresholds thereby burying FMR differentials. Moreover, the paper does not disclose how imposters were paired e.g. randonly or r_{s} say, with same age, race, and sex.

Table 3: Prior studies (continued).

3 Performance metrics

Both verification and identification systems generally commit two kinds of errors, the so-called Type I error where an individual is incorrectly associated with another, and Type II where the individual is incorrectly not associated with themselves.

The ISO/IEC 19795-1 performance testing and reporting standard requires different metrics to be reported for identification and verification implementations. Accordingly the following subsections define the formal metrics used throughout this document.

3.1 Verification metrics

Verification accuracy is estimated by forming two sets of scores: Genuine scores are produced from mated pairs; imposter scores are produced from non-mated pairs. These comparisons should be done in random order so that the algorithm under test cannot infer that a comparison is mated or not.

From a vector of N genuine scores, u_{s} the false non-match rate (FNMR) is computed as the proportion below some threshold, T;

$$
\begin{equation*}
\operatorname{NNMR}(T)=\mathrm{I}-\frac{1}{N} \sum_{i=1}^{N} H\left(u_{i}-T\right) \tag{1}
\end{equation*}
$$

where $H(x)$ is the unit step function, and $H(0)$ taken to be 1.
Similarly, given a vector of M imposter scores, v, the false match rate (FMR) is computed as the proportion above T :

$$
\begin{equation*}
\operatorname{FMR}(T)=\frac{1}{M} \sum_{i=1}^{M} H\left(v_{i}-T\right) \tag{2}
\end{equation*}
$$

The threshold, I, can take on any value. We typically generate a set of thresholds from quantiles of the observed imposter scores, v, as follows. Given some interesting false match rate range, $\left[F M R_{L}, F M R_{U}\right]$, we form a vector of K thresholds corresponding to FMR measurements evenly spaced on a logarithmic scale. This supports plotting of FMR on a logarithmic axis. This is done because typical operations target false match rates spanning several decades 10^{-6} to as high as 10^{-2}.

$$
\begin{equation*}
T_{k}=Q_{v}\left(\mathrm{I}-\mathrm{EMR}_{k}\right) \tag{3}
\end{equation*}
$$

where Q_{v} is the quantile function, and FMR_{k} comes from

$$
\begin{equation*}
\log _{10} \mathrm{FMR}_{k}=\log _{10} \mathrm{FMR}_{L}+\frac{k}{K}\left[\log _{10} \mathrm{FMR}_{U}-\log _{10} \mathrm{FMR}_{Z}\right] \tag{4}
\end{equation*}
$$

Error tradeoff characteristics are plots of $\mathrm{FNMR}(\mathrm{T})$ vs. $\mathrm{FMR}(\mathrm{T})$. These are plotted with $\mathrm{FMR}_{U} \rightarrow 1$ and FMR_{L} as low as is sustained by the number of imposter comparisons, M. This should be somewhat higher than the "rule of three" limit $3 / N$ because samples are generally not independent due to the use of the same image in multiple comparisons.

3.2 Identification metrics

Identification accuracy is estimated from two sets of candidate lists; First, a set of candidate lists obtained from mated-searches; second, a set from non-mated searches. These searches should not be conducted by randomly ordering mated and non-mated searches so that the algorithm under test cannot infer that a search has a mate or not. Tests of open-set biometric identification algorithms must quantify frequency of two error conditions:
\& False positives: Type I errors occur when search data from a person who has never been seen before is incorrectly associated with one or more enrollees' data.
\checkmark Misses: Type II errors arise when a search of an enrolled person's biometric does not return the correct identity:

Many practitioners prefer to talk about "hit rates" instead of "miss rates" - the first is simply one minuis the other as detailed below. Sections 3.2.1 and 3.2.2 define metrics for the Type I and Type II performance variables. Additionally, because recognition algorithms sometimes fail to produce a template from an image, or fail to execute a one-to-many search, the occurrence of such events must be recorded. Further because algorithms might elect to not produce a template from, for example, a poor quality image, these failure rates must be combined with the recognition error rates to support algorithm comparison. This is addressed in section 3.4.

3.2.1 Quantifying false positives

It is typical for a search to be conducted into an enrolled population of \bar{N} identities, and for the algorithm to be configured to return the closest L candidate identities. These candidates are ranked by their score, in descending order, with all scores required to be greater than or equal to zero. A human analyst might examine either all L candidates, or just the top $R \leq L$ identities, or only those with score greater than threshold, T.

From the candidate lists, we compute false positive identification rate as the proportion of non-mate searches that erroneously return candidates:
$\operatorname{FPIR}(N, T)=\frac{\text { Num. non-mate searches with one or more candidates returned with score at or above threshold }}{\text { Num, non-mate searches attempted. }}$

Under this definition, FPIR can be computed from the highest non-mate candidate produced in a search -it is not necessary to consider candidates at rank 2 and above. An alternative quantity, selectivity, accounts for multiple candidates above threshold-see [17].

3.2.2 Quantifying hits and misses

If L candidates are returned in a search, a shorter candidate list can be prepared by taking the top $R \leq L$ candidates for which the score is above some threshold, $T \geq 0$. This reduction of the candidate list is done because thresholds may be applied, and only short lists might be reviewed (according to policy or labor availability, for example). It is useful then to state accuracy in terms of R and T, so we define a "miss rate" with the general name false negative identification rate (FNIR), as follows:
$\operatorname{FNIR}(N, R, T)=\frac{\text { Num. mate searches with enrolled mate found outside top } \mathrm{R} \text { ranks or score below threshold }}{\text { Num. mate searches attempted. }}$
This formulation is simple for evaluation in that it does not distinguish between causes of misses. Thus a mate that is not reported on a candidate list is treated the same as a miss arising from face finding failure, algorithm intolerance of poor quality, or software crashes. Thus if the algorithm fails to produce a candidate list, either because the search failed, or because a search template was not made, the result is regarded as a miss, adding to FNIR.

Hit rates, and true positive identification rates: While FNIR states the "miss rate" as how often the correct candidate is either not above threshold or not at good rank, many communities prefer to talk of "hit rates". This is simply the true positive identification rate(TPIR) which is the complement of FNIR giving a positive statement of how often mated searches are successful:

$$
\begin{equation*}
\operatorname{TPIR}(N, R, T)=1-\operatorname{FNIR}(N, R, T) \tag{7}
\end{equation*}
$$

This report does not report true positive "hit" rates, preferring false negative miss rates for two reasons. First, costs rise linearly with error rates. For example, if we double FNIR in an access control system, then we double user inconvenience and delay. If we express that as decrease of TPIR from, say 98.5% to 97%, then we mentally have to invert the scale to see a doubling in costs. More subtly, readers don't perceive differences in numbers near 100% well, becoming inured to the "high nineties" effect where numbers close to 100 are perceived indifferently.

Reliability is a corresponding term, typically being identical to TPIR, and often cited in automated (fingerprint) identification system (AFIS) evaluations.

An important special case is the cumulative match characteristic(CMC) which summarizes accuracy of matedsearches only. It ignores similarity scores by relaxing the threshold requirement, and just reports the fraction of mated searches returning the mate at rank R or better:

$$
\begin{equation*}
\operatorname{CMC}(N, R)=1-\operatorname{FNIR}(N, R, 0) \tag{8}
\end{equation*}
$$

We primarily cite the complement of this quantity, $\operatorname{FNIR}(N, R, 0)$, the fraction of mates not in the top R ranks. The rank one hit rate is the fraction of mated searches yielding the correct candidate at best rank, i.e. CMC(N, 1). While this quantity is the most common summary indicator of an algorithm's efficacy, it is not dependent on similarity scores, so it does not distinguish between strong (high scoring) and weak hits. It also ignores that an adjudicating reviewer is often willing to look at many candidates.

3.3 DET interpretation

In biometrics, a false negative occurs when an algorithm fails to match two samples of one person - a Type II error. Correspondingly, a false positive occurs when samples from two persons are improperly associated - a Type I error,

Matches are declared by a biometric system when the native comparison score from the recognition algorithm meets some threshold. Comparison scores can be either similarity scores, in which case higher values indicate that the samples are more likely to come from the same person, or dissimilarity scores, in which case higher yalues indicate different people. Similarity scores are traditionally computed by fingerprint and face recognition algorithms, while dissimilarities are used in iris recognition. In some cases, the dissimilarity score is a distance possessing metric properties. In any case, scores can be either mate scores, coming from a comparison of one person's samples, or nonmate scores, coming from comparison of different persons samples.

The words "genuine" or "authentic" are synonyms for mate, and the word "imposters"" is used as a synonym for nonmate. The words "mate" and "nonmate" are traditionally used in identification applications (such as law enforcement search, or background checks) while genuine and imposter are used in verification applications (such as access control).

An error tradeoff characteristic represents the tradeoff between Type II and Type I classification errors. For identification this plots false negative vs. false positive identification rates i.e. FNIR vs. FPIR parametrically with T. Such plots are often called detection error tradeoff (DET) characteristics or receiver operating characteristic (ROC). These serve the same function - to show error tradeoff - but differ, for example, in plotting the complement of an error rate (e.g. TPIR $=1$ - FNIR) and in transforming the axes, most commonly using logarithms, to show multiple decades of FPIR.

	Erec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1NFPRR	$T \gg 0$	$\rightarrow \mathrm{FMR}, \mathrm{FPIR} \rightarrow 0$
Links:	TECA Summder	False negative: Failed association of one subject	1:1 FNMR	1:NENTR		\rightarrow FNMR, FNIR $\rightarrow 1$

3.4 Failure to extract features

During enrollment some algorithms fail to convert a face image to a template. The proportion of failures is the failure-to-enroll rate, denoted by FTE. Similarly, some search images are not converted to templates. The corresponding proportion is termed failure-to-extract, denoted by FTX. We do not report FTX because we assume that the same underlying algorithm is used for template generation for errollment and search.

In verification, we do not need to explicitly include failure to extract rates into the FNMR and FMR accuracy statements, because we regard any comparison that invelves an image for which a failure-to-extract occurred as producing a zero similarity score. This increases FNMR and decreases FMR. Gaming opportunities that theoretically arise from this treatment of FMR are generally not of concern because the algorithm under test does not know whether any given image will be used in genuine comparisons, imposter comparisons or both. For identification, we similarly incorporate failure-to-extract events into FNIR and FPIR measurements as follows.

- Enrollment templates: Any failed enrollment is regarded as producing a zero length template. Algorithms are required by the AP1 [18] to transparently process zero length templates. The effect of template generation failure on search accuracy depends on whether subsequent searches are mated, or non-mated: Mated searches will fail giving elevated FNIR; non-mated searches will not produce false positives so, to first order, FPTR will be reduced by a factor of 1 -FTE.
- Search templates and 1:N search: In cases where the algorithm fails to produce a search template from input imagery, the result is taken to be a candidate list whose entries have no hypothesized identities and zero score. The effect of template generation failure on search accuracy depends on whether searches are mated, or non-mated: Mated searches will fail giving elevated FNIR; Non-mated searches will not produce false positives, so FPIR will be reduced.

This approach is the correct treatment for positive-identification applications such as access control where cooperative users are enrolled and make attempts at recognition. This approach is not appropriate to negative identification applications, such as visa fraud detection, in which hostile individuals may attempt to evade detection by submitting poor quality samples. In those cases, template generation failures should be investigated as though a false alarm had occurred.

	Developer	Verification algorithms	Identification algorithims
1	3Divi	3divi-003 3divi-004	3 divi-0 3divi-3
2	Adera Global PTE Ltd	adera-001	
3	Alchera Inc	alchera-000 alchera-001	alchera-0
4	Alivia / Innovation Sys	isystems-001 isystems-002	isystems-17 isystems-3
5	AllGoVision	allgovision-000	allgovision-000
6	Alphasstc	alphaface-001	
7	Amplified Group	amplifiedgroup-001	
8	Anke Investments	anke-004	anke-0 anke-002
9	AnyVision	anyvision-002 anyvision-004	
10	Aware	aware-003 aware-004	aware-0 aware-3
11	Awidit Systems	awiros-001	
12	Ayonix	ayorix -000	ayonix-0
13	Beijing Vion Technology Inc	Vion-000	
14	Bitmain	bm-001	
15	CSA Intellicloud Technology	intellidondai-001	
16	CTBC Bank Co Ltd	ctbobank-000	
17	Camvi Technologies	camvi-002 camvi-004	camvi-1 canvi-3 camvi-4
18	China Electronics Inport-Export Corp	ceiec-001 ceiec-002	
19	Chira University of Petroleum	upe-001	
20	Chunghwa Telecom Co. Ltd	chtface-001	
21	Cogritec Systems GmbH	cognitec-000 cogritec-001	cognitec-0 cognitec-2
22	Cyberextruder	cyberextruder-001 cyberextruder-002	
23	Cyberlink Corp	cyberlink-002 cyberlink-003	
24	DSK	dsk-000	
25	Dahira Technology Co Ltd	dahua-002 dahua-003	dahua-0 dahua-1 dahua-002
26	Deepglint	deepglint-001	deepglint-001
27	Dermalog	dermalog-005 dermalog-006	dermalog-0 dermalog-5 dermalog-6
28	DiDi ChuXing Technology Co	didiglobalface-001	
29	Digital Barriers	digitalbamiers-002	
30	Eyedea Recognition		eyedea-0 eyedea-3
31	Facesoft Lut	facesoft-000	
32	FarBax Inc	18-001	[8-001
33	Cemalto Cogent	sogent-003 cogent-004	
34	Glory Ltd	gloty-001	glory-0
35	Gorilla Technology	gorilla-003	gorilla-0
36	Guangzhou Pixel Solutions Co Ltd	pixelall-002	pixelall-002
37	Hengrui AI Technology Ltd	hr-001 hr-002	
38	Hikvision Research Institute	hik-001	hik-0) hik-5
39	ID3 Technology	id3-003 id 3-004	
40	ITMO University	$14 \mathrm{mo}-005$ itmo-006	
41	Idemia	idemia-004 idemia-005	idemia-0 idemia-4idernia-5
42	Imagus Technology Pty Lid	imagus-000	imagus-0
43	Imperial College London	imperial-000 imperial-002	imperial-000
44	Incode Tectucologies Ine	iticode-004	Licode-0 incode-004

Table 4: Algorithms evaluated in this report.

- Eece Summary	False positive: Incortect association of two subjects	1:1 PMR	1:NFPIR	$T \gg 0$	\rightarrow FMR, FPIR $\rightarrow 0$
Iks: Tech, Summary	False negative: Failed association of one subject	11.1 FNMR	1:N FNIR		\rightarrow FNMR FNIR -1

	Developer	Verification algorithms	Identitication algorithms
45	Innovatrics	innovatrics-004 innovatrics-006	intovatrics-0)
46	Institute of Information Technologies	iit-001	
47	Intel Research Croup	intelresearch-000	
48	Intellivision	intellivision-001 intellivision-002	
49	Is It You	isityou-000	
50	Kakao Corp	kakao-001 kakao-002	
51	Kedacom International Pte	kedacom-000	kedacom-001
52	KneronInc	kneron-003	
53	Lomonosov Moscow State University	intsysmsu-000	intsysmsu-000
54	Looknan Electroplast Industries	lookman-002 lookmant-004	
55	Megvii/Face++	megvii-001 megvii-002	megvii-0 megvii-1
56	Microfocus	microfocus-002 miarofocus-001	microfocus-0
57	Microsoft		microsoft-0 microsoft-5
58	Momenturn Digital Co Ltd	sertis-000	
59	Moontime Smart Technology	mt-000	
60	N-Tech Lab	ntechlab-006 ntechlab-007	ntechlab-0 ntechlab-6 ntechlab-007
61	NEC		nec-2 nec-3
62	Neirotechnology	neurotechnology-005 neurotechnology-006	neurotechnology-0 neurotechnology-5 neurotechnology-007
63	Nodeflux	nodeflux-001 nodeflux 0002	
64	NotionTag Technologies Private Limited	notiontag-000	
65	Panasoric R + D Center Singapore	psi-002psl-003	
66	Paravision (EverAl)	everai-paravision-003 paravision-004	everai-0 everai-3 everai-paravision-004
67	Rank One Computing	tankone-007	ratkone-0 rankone-5 rankone-006 rankone-007
68	Realnetworks Inc	realnetworks-002 2 realnetworks-003	realnetworks-0 realnetworks- 2 realnetworks-003
69	Remark Holdings	remarkai-001	remarkai-0 remarkai-000
70	Rokid Corporation Ltd	rokid-000	
71	Saffe Ltd	saffe-001 saiffe-002	
72	Sensetime Group Ltd	sensetime-002	sensetime-0 spnsetime-1 sensetime-002
73	Shaman Software	shaman-000 shaman-001	shaman-0
74	Shanghai liao Tong University	sjtu-001	
75	Shanghai Ulucu Electronics Technology Co. Ltd	ulufacz-002	
76	Shanghai Universiy - Shanghai Film Academy	shu-001	
77	Shanghai Yitu Technology	yitu-003	yitu-0 yitu-4 yitu-5
78	Shenzhen EI Networks Limited	einetworks-000	
79	Shenzhen Inst Adv Integrated Tech CAS	siat-004 siat-002	siat-0
80	Shenzhen Intellifusion Technologies Co Ltd	intellifusion-001	
81	Smilart	smilart-002 smilart-003	smilart-0
82	Star Hybrid Limited	Starhybilid-091	
83	Synesis	synesis-005	synesis-0
84	Tech5 SA	tech5-002 tech5-003	tech5-001
85	Tencent Decpsca Lab	deopsen-001	decprea-001
86	Tevian	tevian-004 tevian-005	tevian-0 tevian-4
87	Thales		cogent-0 cogent-3
88	TigerIT Americas LLC	tiger-002 tiger-003	tiger-1)

Table 5: Algorithms evaluated in this report.

	Developer	Verification algorithms	Identification algorithms
89	Tongłi Transportation Technology	tongyi-005	
90	Toshiba	toshiba-002 toshiba-003	toshuba-0 toshiba-1
91	Trupface.ai	trueface-000	
92	ULSee Inc	ulsee-001	
93	Veridas Digital Authentication Solutions S.L.	veridas-002	
94	Via Technologies line.	via-000	
95	Videonetics Technology Put Lid	videonetics-001	
96	Vigilant Solutions	vigilantsolutions-006 vigilantsolutions-007	Vigilantsolutiois-0
97	Visidon	vd -001	vd-0)
98	Vision-Box	visionbox-000 visionbex-001	
99	Visionlabs	visionlabs-006 visiorilabs-007	visionlabs-7 visionlabs-008
100	Vocord	vocord-006 vocord-007	vocord-0 vocord-3
101	Winsense Co Ltd	Winsense-000	
102	X-Laboratory	x-laboratory-000	
103	Xiamen Meiya Pico Information Co. Ltd	meiya-601	
104	Zhuhai Yisheng Electronics Technology	yisheng-004	yisheng-0
105	IQIYI the	iqface-000	
106	iSAP Solution Corporation	isap-001	

Table 6: Algorithms evaluated in this report.

\%	Esec. Summary	False positive: Incorrect association of two subjects	1:1FMR	1NFPIR	$T>0$	$\rightarrow \mathrm{FMR}, \mathrm{FPIR} \rightarrow 0$
	Tech-Susmary	False negative: Failed association of one subject	1:1 FNMR	1NFNIR		\rightarrow FNMR, FNIR $\rightarrow 1$

4 False positive differentials in verification

False positives occur in biometric systems when samples from two individuals yield a comparison score at or above a set threshold. Most systems are configured with a threshold that is fixed for all users. False positives present a security hazard to one-to-one verification applications. They have similarly sericus consequences in one-to-many identification applications. For example, in applications where subjects apply for some benefit mote than once under different biographic identities e.g. visa-shopping, driving license issuance, benefits fraud, an otherwise undetected false positive might lead to various downstream consequences such a financial loss. In a surveillance application a false positive may lead to a false accusation.

This section gives empirical quantification of the variation in verification false match rates across demographics. We present results for one-to-many identification later in section 7 .

We conduct several experiments with images drawn from both domestic United States and worldwide populations.

1. One-to-one application photo cross comparison, by age, sex, country-of-birth.
2. One-to-one mugshot cross comparison by age, sex, and tace.
3. One-to-one visa photo cross comparison by age.

4.1 Metrics

The metrics appropriate to verification have been detailed in section 3.1. These are related to particular applications in Figure 2. The discussion in subsequent sections centers on false match rates at particular thresholds, i.e. $\operatorname{FMR}(T)$.

4.2 False match rates under demographic pairing

It is necessary in many biometric tests to estimate false match rates. This is done by executing imposter comparisons, and measuring false positive outcomes at some threshold(s). Historically biometric evaluations generated imposter comparisons by randomly pairing individuals, or by exhaustively comparing all individuals. As we will show in this section, this practice is inappropriate for evaluation of face recognition algorithms as it underestimates false match rates that would occur in practice. The random pairing of imposters is sometimes referred to as zero-effort pairing, mean that no effort is expended by an imposter to look like the target of the recognition attempt.

	Exbc. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1NFPIR	$T \gg 0$	\rightarrow FMR, FPIR
Links:	TECC, Summary	False negative: Failed association of one subject	1.1 FNMR	1:N FNIR		\rightarrow FNMR, ENIIR $\rightarrow 1$

Figure 2: Verification applications and relevant metrics.

Figure 3: For application photos, the figure shows growth in one-to-one verification false match rates as the imposter demographic pairings are made more similar. At each level the point shows the mean FMR over all countries, age groups, and sexes. For example, in the second row "6. Same country and age" the mean is taken over 24 within-country times 5 within age-group times 4 within and cross sex FMR estimates, i.e. 480 FMR values. The blue line spans the 5 -th to 95-th percentiles of the FMR estimates. The vertical line shows a nominal FMR value of 0.00003 obtained by setting the threshold on randomly associated i.e. zero-effort pairs of mugshot images.

Method: We used each verification algorithm to compare 442019 application images with a disjoint set of 441517 other application images. The two sets are subject-disjoint. The subjects were born in 24 countries. This produced 195 billion imposter scores. The images are described in Annex 2.

The red point in the plot shows the mean of false match rates over particular sets of demographic groups.

Row 7: The uppermost point corresponds to the mean over 240 FMR estimates, namely those comparing each of two sexes with each other, in each of five age-groups, and within each of 24 countries ($2 \times 5 \times 24$ $=240)$.
\rightarrow Row 6: As row 7, but the average is over 480 FMR estimates that now includes different sex FMR estimates also.

D Row 5: As row 7, but now the average is over 1200 FMR estimates that additionally includes all cross-age group imposter scores.

- Row 4: As row 7, but now the average is over 2400 FMR estimates that additionally includes all cross-age and cross-sex imposter scores.
- Row 3: The average is over 5760 FMR estimates that includes 24^{2} cross-country comparisons within each sex and age group.

Row 2: The average is over 11520 FMR estimates now including different sex FMR estimates also.

\square Row 1: The average is over 28880 FMR estimates now including five different within-age FMR estimates also.

- Row 0: The average is over 57600 FMR estimates reflecting within- and between-group estimates for 24 countries, 5 age groups and 2 sexes $\left(24^{2} \cdot 5^{2} \cdot 2^{2}\right)$.

The ordering of these rows is hand-crafted. Evaluators at DHS Maryland Test Facility developed [20] a formal approach to showing the most influential pairing factor by quantifying information gained about FMR by having knowledge of the demographic factors, age, sex and race.

The figure shows how false match rates increase when imposters are drawn from increasingly similar demographics. This shows that fully zero-effort imposter pairings understate false match rates relative to the situation of a slightly more active imposters who would chose to present (stolen) credentials from subjects of the same sex, age and ethnicity. The practice of using zero-effort imposter pairings in tests, we think, stems from tests of fingerprint algorithm that use where friction ridge structure, particularly minutiae point arrangements, that are thought to be a developmental trait without clear genetic influence ${ }^{g}$

Note that our analysis has not so far documented whether particular demographic groups give higher false match rates. To address this question we introduce Figure 4 which shows results similar to those above but now for each specific country of birth.

We make the following observations:
$>$ Restricted pairing increases FMR: Within each country, there is a more than order of magnitude increase in FMR between the zero-effort pair anyone-with-anyone setting, and the same-age, same-sex, samecountry pairing. This re-iterates the results of the previous section, and shows it applies globally:
\& Country-of-birth matters: For many of the different levels of demographic pairing there is between one and two orders of magnitude between the 24 countries represented in this dataset. For example when imposters are from the same sex and country but of any age, the algorithm gives FMR of 0.000046 on Polish faces and 0.0024 on Vietnamese, a fifty fold increase.

Regions with highest and lowest FMR: Across algorithms often the lowest FMR is observed in Eastern European populations and the highest in Easl Asian populations. However there are imporlant exceptions: Some algorithms developed in East Asia tend to give lower FMR in photos of subjects born in East Asian countries ${ }^{9}$. This observation and the topic of demographic differentials associated with na-

[^12]
tional origin are covered more completely in the next section which includes results for comparison of individuals within and across national boundaries,

Discussion: The results above show that false match rates for imposter pairings in likely real-world scenarios are much higher than those from measured when imposters are paired with zero-effort. For this reason NIST has been reporting "matched-covariate" accuracy results in its FRVT evaluation of face verification algorithms [16]. Along similar lines the Australian Department of Foreign Affairs and Trade in tests it sponsors only uses same-sex imposter pairings. The effect of this is to raise thresholds, and thereby raise false non-march rates also. Thresholds increase because they are determined from non-mate scores, $s_{\text {, }}$ via the quantile function Q, as that value, I, which gives a proportion, FMR, at or above threshold:

$$
\begin{equation*}
T=Q(s, 1-\mathrm{FMR}) \tag{9}
\end{equation*}
$$

and the set of demographically matched scores is smaller than if all possible comparisons is used.

Figure 4: The heatmap shows FMR for each country-of-birth, when the imposter comparisons are drawn from increasingly demographically-matched individuals. Each cell depicts FMR on a logarithmic scale. The text value is $\log _{10}(\mathrm{FMR})$ with large negative values encoding superior false match rates. The center row ("0. Zero effort") row compares individuals without regard to demographics. Rows above that pair imposters more closely until, in the second row, the imposters are of the same sex, age and country of origin. The top row corresponds to one particular demographic often associated with the highest FMR values. The rows below center pair for increasingly unlikely imposter pairings. For example " -5 . Diff sex and age"shows EMR for imposters of different sex and age group. The countries appear in order of increasing mean FMR. Values below-6 are pinned to -6. Annex 8 contains the corresponding figure for all aigorithms.

4.3 False match rates within and across countries

Method: Using high quality application portraits drawn from the corpus described in Annex 2, we compared 442019 images from 24 countries with 441517 images of different individuals from the same countries, yielding 195.2 billion imposter comparisons. We executed this set of comparisons with 126 verification algorithms submitted to the FRVT Verification track. These are listed in Table 4-6. We compared scores with a set of 10 thresholds to produce FMR estimates at each of those thresholds. The thresholds were computed over a set of 93070400 imposter comparisons made using a different set of images, namely the law enforcement mugshots detailed in Annex 1. Each threshold was selected as the lowest value that gave FMR at or below a target FMR. The target FMR value was 0.000013 ,

Each photograph was assigned to the age groups defined by the intervals ($00-20$), ($20-35$), ($35-50$), ($50-65$), and (65-99).

We excluded small numbers of photographs for which country of birth was not available, or for which sex was not listed as male or female.

Each comparison is accompanied by sex, country of birth and age group metadata for the two individuals represented in the photographs. Given many comparisons with the same demographic pairing, we can produce a measurement of FMR when comparing individuals from two demographic groups, for example Polish men over the age of 65 with Mexican women between 20 and 35.

Analysis: To address the issue addressed in the title of this section we produced figures depicting cross-country false match rates. Figure 5 is an example. We restricted the demographics to just men in the largest age group, ($35-50$), and then repeated that for women. We remove sex and age from the discussion for two reasons: First, to isolate the country-of-origin effect, and, second, to reflect what real-world imposters would do: procure identity credentials from persons of the same age and sex.

Figure 5 shows cross-country FMR for one of the more accurate algorithms. Annex 7 contains corresponding figures for all algorithms, for both men and women. The annex therefore extends to more than 250 pages. We could repeat this visualization for other age groups - the results are simular. We discuss the effect of age itself later. Likewise, we could repeat the visualization for other recognition thresholds. The one adopted corresponds to a $\mathrm{FMR}=0.00003$. The trends are very similar at any threshold.

The Figure shows FMR as a heatmap. It uses a logarithmic scale, so that a FMR of 0.0001 is represented by a color and a text value of -4 , i.e. \log to the base 10. Low FMR values are shown in blue. High FMR values are shown in red, A grey color connotes the target FMR value $\left(\log _{10} 0.00003=-4.5\right)$. High FMR values present a security concern in verification applications.

Discussion: From the Figure and those in the annexes, we make a number of observations. First by assigning

	Exec. Summary	False positive: Incorrect association of two subje	$1: 1 \mathrm{FMR}$	12N FPIR	$T \geqslant 0$	\rightarrow FMR, FPIR $\rightarrow 0$
Links:	Tech. Summary	False negative: Failed association of one subject	1:1 FNMR	1N ENIR		\rightarrow FNMR, FNIR $\rightarrow 1$

Algorithm imperial_002 Threshold: 1.381120 Dataset Application Nominal FMR: 00000030 Sex M log10 FMR

Figure 5: For 24 countries in seven regions the figure shows false positive rates when the reference algorithm is used to compare single photos of mid-aged male subjects from the countries identified in the respective columns. The threshold is to a preset fixed value everywhere. Each cell depicts FMR on a logarithmic scale. The text value is $\log _{10}$ (FMR) with large negative values encoding superior false match rates. Annex 7 contains the corresponding figure for all algorithms.

Algorithm imperial 002 Threshold: 1.381120 Dataset Application
Nominal FMR: 00000030 Sex F logio FMR
-6

Figure 6: For 24 countries in seven regions the figure shows false positive rates when the reference algorithm is used to compare single photos of mid-aged female subjects from the countries identified in the respective columns. The threshold is to a preset fixed value everywhere. Each cell depicts FMR on a logarithmic scale. The text value is $\log _{10}$ (FMR) with large negative values encoding superior talse match rates. Annex 7 contains the corresponding figure for all algorithms.

Algorithm yibu 003 Threshold 37.785000 Dataset Application
Nominal FMR: 0.000030 Sex.M $\log 10$ FMR

$$
-5
$$

-5

Figure 7: For 24 countries in seven regions the figure shows false positive rates when the Chinese-developed algorithm is used to compare single photos of mid-aged male subjects from the countries identified in the respective columns. The threshold is to a preset fixed value everywhere. Each cell depicts FMR on a logarithmic scale. The text value is $\log _{10}$ (FMR) with large negative values encoding superior false match rates. Annex 7 contains the corresponding figure for all algorithms.

	Evec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1N FPIR	$\mathrm{T} \gg 0$	\rightarrow FMR, FPIR
Links:	TECH. Summary	False negative: Failed association of one subject	1.1 FNMR	1:N FNIR		\rightarrow FNMR, FNIR $\rightarrow 1$

countries into the following regions

\author{

- 1: Eastern Europe - Russia, Poland and Ukraine
 - 2: Central America - Mexico, Honduras, El Salvador, Nicaragua
 - 3: West Africa-Ghana, Liberia, Nigeria
 is 4: The Caribbean - Haiti, Jamaica
 1> 5: East Africa - Ethiopia, Kenya, Somalia
 p 6; South Asia - India, Iran, Iraq, Pakistan
 - 7: East Asia - China, Japan, Korea, Philippines, Thailand, Vietnam
}
we see a block structure, in particular a block-diagonal structure indicative of strongly correlated false match rates within region. For example it is true that when comparing photos of individuals from East Africa with those from Eastern Europe, most algorithms give very low FMR. The more interesting results are within-region, around the diagonal, and between regions along the diagonal. We now note the following common trends, and then some notable exceptions. We then conclude with some comments on what the ideal situation would be, and on the meaning. Each Annex includes a "contact sheet" which shows all heatmaps on a single page as thumbnails. The idea is to show macroscopic behavior across all algorithms. When viewed on a computer the figure has very high resolution and zooming in reveals full detail; when printed it will likely just show coarse trends.
- Nominal FMR in Eastern Europe: For many algorithms, FMR within Eastern Europe is close to the nominal target false match rate i.e. a grey color, $-5 \leq \log _{10}$ FMR ≤-4. There are few exceptions to this, even for algorithms developed in China, Western Europe and the USA.

D Higher FMR in East Africa: For almost all algorithms the highest FMR is for comparison of Somali faces. We suspected this could be due to mislabeled data or statistical (in)significance but rejected those possibilities ${ }^{10}$. Further the FMR is high within Ethiopia and between Ethiopia and Somalia. Similarly KenyaKenya comparisons give high FMR, although somew hat reduced. In a substantial majority of photos of Somalian women, the subject is wearing full head dress that typically covers the hair and ears leaving only the face exposed. While this might produce false positives, headwear is almost always absent in photographs of men. Further work is needed to explain the observation in more detail.

[^13]| Links: Exbc. Summary Tech. Sumparer | False positive: Incorrect association of two subjects False negative: Failed association of one subject | 1:1 FMR
 1:1 FNMR | 1NFPIR
 1N FNTR | $T \gg 0$ | $\begin{aligned} & \rightarrow \text { FMR, FPIR } \rightarrow 0 \\ & \rightarrow \text { FNMR, FNIR } \rightarrow 1 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Δ Higher FMR in West Africa too: The countries with the second highest FMR tend to be in West Africa, i.e. Ghand, Liberia and Nigeria. These countries do not share any borders. The high FMR values occur almost equally within and between countries.

- Higher FMR between West Africa and the Caribbean: Elevated FMR occurs when comparing faces of individuals from countries in West Africa with those in the Caribbean.

■ Higher FMR between West and East Africa: Elevated FMR occurs when comparing faces of individuals from countries in West Africa and Kenya. The effect is often lower than within either region alone. However, the high FMR does not extend to comparisons of West African and Ethiopian or Somali faces.

D Higher FMR in East Asia: It is very common for algorithms to give high FMR within East Asian countries and between them. For the algorithm shown, Vietnamese faces strongly match other Vietnamese, and with all the other countries in the region. The East Asian block often divides into northern and southern blocks with reduced, but still high, FMR when individuals are compared between those blocks (e,g. Korea and Vietnam).

- Some Chinese algorithms give nominal FMR when comparing Chinese: As shown in Annex 7 some algorithms developed in China exhibit much reduced FMR on the East Asian population - for example, see Figure 7. These algorithms are from Megvii, Meiya, Hik Vision, Dahua, X-Laboratory, Yitu and SHU (Shanghai University Film Academy). For Deepsea Tencent the same applies, but less prominently in South East Asia. In some cases the effect is only apparent for comparisons involving images of Chinese, e.g. Star Hybrid. Other Chinese algorithms, however, exhibit the more common trend of producing elevated FMR across East Asia. These include developers of more accurate algorithm such as Alphaface, Deepglint and Sensetime. Thus it is not sufficient for an algorithm to be developed in China for it to mitigate the FMR increase on images from the local population.
\triangle One of the most accurate algorithms produces more uniform FMR: The corresponding Figure for the Yitu003 algorithm - Figure 7) -shows that the demographic differentials in FMR are attenuated. As noted the FMR values for comparisons within East Asia are near the nominal value. Notably, however, this applies to West Africa also. This appears to be an important result, as it is a proof that some algorithms do not exhubit higher FMR in those populations. Yitu reported in a meeting in London in October 2017 that its training data included on order of 10^{9} photographs of an unspecified (lower) number of Chinese nationals. Whether that is the entirety of their training data is not known.
- Developer dependency does not apply to South Asia: Neither Lookman nor Tiger IT's algorithm produce nominal FMR on the S. Asian imposter comparisons.

D Magnitudes are large: The East African FMR values are often two orders of magnitude higher than the nominal value and those recorded within Eastern Europe. That is, the $\log _{10}$ FMR values are +2 higher corresponding to FMR that is of order 100 times larger than the de-facto baseline. From a security perspective this is analogous to using a two-digit PIN instead of the common four digits. For West Africa, the FMR values are between one and two orders of magnitude above baseline. A shift of 1.4 on the logarithmic scale corresponds to a factor of 25 inerease, for example.

D Anomalies in the figures: The cross-country heatmaps for the SIAT-004, Panasonic PSL-001, and Sensetime002 algorithms are mostly red, indicating high false match rates for all comparisons. This may arise because the threshold used was computed over comparisons of a different kind of images - mugshots not application portraits. The algorithms are told what kind of image they are being given at the time features are extracted from the image. The consequence is that the imposter distribution for mugshots looks different to that for the application images, and thus thresholds are not portable. This would present an operational issue to any end-user not informed to set the threshold accordingly. In any case, while the heatmaps are mostly red, they still exhibit the same kind of FMR variations seen for many other algorithms.

Discussion: The heatmap figures of Annex 7 show a widespread elevation of false match rates in African faces relative to those in Eastern Europe. The reasons for these shifts are unknown. We did not make any attempts to explain the effects. To summarize the effect we include the scatter plots of Figures 10-9. Each point corresponds to one algorithm. Its coordinates show false match rates within West Africa against those within Eastern Europe. The degree to which the point is above the diagonal line shows the extent that FMR in the African countries exceeds that in the Eastern European ones.

We note several outcomes of this visualization.

D Worst case In the scatter plot for African women Figure 9 there is a cluster of algorithms located near $x=0.00012$ and $y=0.003$. Compared to the target FMR value of 0.00003 (the vertical line) there is a near four-fold increase in FMR of women over men. Much more significantly there is a more than 100 -fold vertical excursion from white men to African women.
Δ Dispersion Some algonithms, most notably those from Sensetime give FMR much different to the target value. The threshold was set using Annex 1 mugshots but the Figure reflects FMR measured over comparison of Annex 2 application photos. Both sets of photos are well illuminated portraits, so this instability across datasets would be unwelcome, especially if an algorithm were to be fielded on imagery qualitatively different. Many algorithms do give the expected FMR for white men $\mathrm{FMR}=0.00003$ as seen in Figure 8.

Figures 10 and 11 repeat the scatterplot summaries for the East Asian demographic too. The picture there is more interesting. While the same pattern is present, it is clear that some algorithms developed in China do not give elevated false match rates relative to Eastern Europeans. The absence of the effect is important in that it implies high FMR in that population is not inevitable. We did not see a corresponding improvement for South Asian faces for the few algorithms we understand were submitted by developers there (in India and Bangladesh).

Figure 8: The scatter plot shows FMR when comparing same-age men within and across three Eastern European countries (Russia, Ukraine, Poland), against FMR obtained comparing men within and across three West African countries (Ghana, Liberia, Nigeria). The threshold is fixed for each algorithm to give the FMR noted in the annotation over white men in the U.S. mugshot database. This is indicated by the vertical and horizontal green lines. The blue diagonal line $y=x$ is included to show "over/ander". The color code identifies the domicile of the developer - some multinationals conduct research elsewhere. Training data likewise may originate elsewhere.
1N FPIR

Figure 9: The scatter plot shows FMR when comparing same-age women within and across three Eastern European countries (Russia, Ukraine, Poland), against FMR obtained comparing women within and across three West African countries (Ghana, Liberia, Nigeria). The threshold is fixed for each algorithm to give the FMR noted in the annotation over white men in the U.S. mugshot database. This is indicated by the vertical and horizontal green lines. The blue diagonal line $y=x$ is included to show "over/under". The color code identifies the domicile of the developer-some multinationals conduct research elsewhere. Training data likewise may originate elsewhere.
1N FPIR

Figure 10: The scatter plot shows FMR when comparing same-age men within and across three Eastern European countries (Poland, Russia, Ukraine), against FMR obtained comparing men within and across six East Asian countries (China, Japan, Korea, Philippines, Thailand and Vietnam). The threshold is fixed for each algorithm to give the FMR noted in the annotation over white men in the U.S. mugshot database. This is indicated by the vertical and horizontal green lines. The blue diagonal line $y=x$ is included to show "over/under". The color code identifies the domicile of the developer-some multinationals conduct research elsewhere. Training data likewise may originate elsewhere.

Figure 11: The scatter plot shows FMR when comparing same-age women within and across three Eastern European countries (Poland, Russia, Ukraine), against FMR obtained comparing women within and across six East Asian countries (China, Japan, Korea, Philippines, Thailand and Vietnam). The threshold is fixed for each algorithm to give the FMR noted in the amnotation over white men in the U.S. mugshot database. This is indicated by the vertical and horizontal green lines. The blue diagonal line $y=x$ is included to show "over/under". The color code identifies the domicile of the developersome multinationals conduct research elsewhere. Training data likewise may originate elsewhere.

Figure 12; For mugshot photos tagged with one of four race labels and a sex label, the heatmaps show false positive rates for comparison of randomly selected photos from the groups identified in the respective rows and colmme. Two algorithms are used, one in each panel, and the threshold for each is set to a fixed value everywhere. The value is the smallest threshold that gives $F M R \leq 0.0001$ on the white male imposters. Each cell depicts FMR on a logarithmic seale. The text value is $\log _{10}$ (FMR) with large negative values encoding superior false match rates. Annex 6 contains the corresponding tigure for all algorithms.

4.4 Dependence of FMR on race in United States mugshots

Method: Using high quality mugshot portraits from the mugshot images detailed Annex I, we apply each verification algorithm to conduct 3 million comparisons for each of the eight demographics defined by two sexes and four races. The origin and meaning of these labels is described in the Annex, We executed this set of comparisons with 126 verification algorithms submitted to the FRVI Verification track. These are listed in Tables 4-6. We compared scores with a threshold to produce FMR estimates for each demographic pairing. Each threshold was selected as the lowest value that gave FMR at or below a target FMR. The target FMR value was 0.0001 . The threshold was computed over the set of 3000000 mugshot imposter comparisons made for white males. Thus, by design, the FMR for that demographic is exactly 0.0001 .

We excluded photographs for which race or sex was unavailable or unknown. We did not report comparisons by age-group.

Analysis: As with the international set of application photos, we use the heatmap to show cross-demographic

	Exec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1:N FPIR	$T>0$	\rightarrow FMR, FPII
Links:	TECH-Summar	False negative: Failed association of one subject	1:1 FNMR	1-N FNTR		\rightarrow FNMR, FNIR $\rightarrow 1$

false match rates, including cross-sex. Heatmaps for two algorithms are shown in Figure 12. The Figure shows FMR as a heatmap. It uses a logarithmic scale, so that a FMR of 0.0001 is represented by a color and a text value of -4 , i.e. \log to the base 10. Low FMR values are shown in blue. High FMR values are shown in red. A grey color connotes the target FMR value $\left(\log _{10} 0.0001=-4\right)$. High FMR values present a security concern in verification applications. Corresponding figures for all algorithms appear in Annex 6

Figure 13 extracts the within-sex and within-race diagonal elements of those figures and summarizes the results for all algorithms, ordering the result by worst-case FMR elevation.

Discussion: From the figure, and those in the annex, we make a number of observations.

> D Higher FMR in women: As with application photos, most algorithms give systematically higher false match rates in women than in men. The magnitude of this difference is lower with mugshots than with application photos.
> a Highest FMR in American Indians: First, the highest FMR occurs in images of American Indians ${ }^{11}$. For the Imperial-002 algorithm featured in Figure 12 the FMR for American Indian women is 0.0068 , i.e. a 68 fold increase over the FMR of 0.0001 in white males. In men, the multiple is 47 . Why such large increases occur is not known. One component of the increase may stem from database identity labelling errors ${ }^{12}$. We discount this possibility because the database has otherwise excellent ground-truth integrity, supported by fingerprint enrollments.

- Higher FMR in Asian and Black women: There are order-of-magnitude increases in FMR in mugshots of Asian and Black women. Some algorithms developed in China reduce this differential, for example Yitu-003 in the right panel of Figure 12.

[^14]

Figure 13: For each verification algorithm, the dots give the false match rates for same-sex and same-race impostex comparisons. The threshold is set for each algorithm to give FMR $=0.0001$ on white males (the purple dots in the right hand panel). The algorithms are sorted in order of worst case FMR, usually for American Indian women. Algorithms developed in China appear in the lower panel.

Figure 14: For six countries selected for the high number of images in the dataset and from distinct regions the heatmaps show cross-age false match rates for imposters of the same sex from the age groups given on the respective axes. Each cell depicts FMR on a logarithmic scale. The text value is $\log _{10}(\mathrm{FMR})$ with large negative values encoding superior false match rates. Annex 9 contains the corresponding figure for all algorithms.

4.5 Do some or all algorithms yield more false positives on certain age groups

Method: Using high quality application portraits drawn from the corpus described in Annex 2, we compared 442019 images from 24 countries with 441517 images of different individuals within and across age groups $(00-20],(20-35],(35-50],(50-65]$, and $(65-99]$.

We executed this set of comparisons with 126 verification algorithms submitted to the FRVT Verification track. These are listed in Tables 4-6. Each comparison yield a score. When many scores are compared with a fixed threshold, we obtain an estimate of the false match rate. The threshold was computed over a set of 93070400 imposter comparisons made using a different set of images, namely the mugshots detailed in Arnex 1. The threshold is the smallest value that for which the FMR is less than or equal to 0.00003 . This was repeated for other thresholds giving FMR $\{0.000001,0.000003,0.00001,0.00003,0.0001,0.0003,0.001,0.003,0.01,0.03\}$.

Each comparison is accompanied by sex, country of birth and age group metadata for the two individuals represented in the photographs. We excluded small numbers of photographs for which age information was unavailable or for which sex was not listed as male or female.

Given many comparisons with the same demographic pairing, we can produce a measurement of FMR when comparing individuals from two age groups, for example Polish men over the age of 65 with Polish men under 20.

Figure 15: For visa photos from all countries, the heatmap shows for one algorithm cross-age false match rates for imposters of the same sex. Each cell depicts FMR on a logarithmic scale. The text value is $\log _{10}(\mathrm{FMR}$) with large negative values encoding superior false match rates. The threshold is fixed to the value that gives a FMR of 0.0001 over all zero-effort imposter pairs. Annex 10 contains the corresponding figure for all algorithms.

Analysis: To address the issue of age we produced figures depieting cross-age false match rates. We do this within-country only, as cross-country effects have been covered in section 4.3. We include male-male, femalefemale, and also male-female comparisons (although they are of less interest operationally). Figure 14 is an example, showing results for one of the more accurate algorithms. The Figure includes results for six countries, one per region. We dropped one region (the Caribbean) and 18 of the 24 countries because the effects are similar everywhere.

Figure 14 shows cross-age group FMR for one of the more accurate algorithms. Annex 9 contains corresponding Figures for all algorithms, and therefore extends to more than 130 pages.

Discussion: From Figure 14 and those in the annex, we make these observations.

- Lower FMR for persons in different groups: In almost all cases - for all algorithms, countries of origin and both sexes, comparison of images of persons in different age groups yields lower (better) false match rates than for persons in the same age group. This, obviously, is an aggregate result; it will generally be possible to find some individuals from different age groups who produce high imposter scores but this will be increasingly difficult as the age difference increases.
- Highest FMR in the oldest age group: For women from all most countries, comparison of images of individuals in the 65 -and-over age group produce the highest false match rates. For men this is often true also.
> High FMR in the youngest age group: For both sexes, but men in particular, comparison of images of persons in the $12-20$ age group produce high false match rates. The clataset does not include any subjects below 12. Below that age we consider a smaller dataset of visa photographs (see Annex 3) that includes individuals in age groups $(0,4)$ and $(4,10]$. The results are included in the heatmap of Figure 15. Note that each FMR estimate is formed from comparisons from all countries, not just one, so they hide the geographic idiosyncrasies of the algorithms.

These results are similar to those reported by Michalski et al. [28] for false positives in children using one commercial algorithm. The report also shows false negative ageing effects broken out by age at enrolment, and time lapse.

Lower FMR across sex: Comparison of images of persons of different sex usually produces very low FMR. However, within the youngest and oldest age groups, FMR is again higher and substantially above the nominal FMR.

Links: $\begin{aligned} & \text { Exec. SUMMARY } \\ & \text { TECH. SUMMAKy }\end{aligned}$	False positive: Incorrect association of two subjects. False negative: Failed association of one subject	$\begin{aligned} & \text { 1:1 FMR } \\ & \text { 1:1 FNMR } \end{aligned}$	$\begin{aligned} & \text { 1:NFPIR } \\ & \text { I:N FNIR } \end{aligned}$	$\mathrm{T} \gg 0$	$\begin{aligned} & \rightarrow \text { FMR, FPIR } \rightarrow 0 \\ & \rightarrow \text { FNMR, FNR } \rightarrow 1 \end{aligned}$

Figure 16: For application photos, the The heatmap shows one-to-one false match rates for same-sex, same-age and same-country of birth imposters, broken out by age and country. The text value is $\log _{10}(\mathrm{FMR})$ with large negative values encoding superior false match rates. Each cell depicts FMR on a logarithmic scale. The text value is $\log _{10}(\mathrm{FMR})$ with large negative values encoding superior false match rates. Amex 11 contains the corresponding figure for all algorithms.

5 False negative differentials in verification

5.1 Introduction

False negatives occur in biometric systems when samples from one individual yield a comparison score below a threshold. This will occur when the features extracted from two input photographs are insufficiently similar. Recall that face recognition is implemented as a differential operator: two samples are analyzed and compared. So a false negative occurs when two from the same face appear different to the algorithm

5.2 Tests

This section gives empirical quantification of the variation in false negative rates across demographics. We base this on recognition results from three one-to-one verification tests:

D Mugshot - Mugshot: In the first test we look for demographic effects in the groups defined by the sex and race labels provided with these United States images - see Annex 1.

D Application - Application photo: We consider also a high quality dataset collected from subjects hailing from twenty four countries in seven global regions.

- Application - Border crossing photo: As discussed in Annex 4, the border crossing photos are collected under time constraints, in high volume immigration environments. The photos there present classic pose and illumination challenges to algorithms.

5.3 Metrics

The metrics appropriate to verification have been detailed in section 3.1. These are related to particular applications in Figure 2. The dicussion in subsequent sections centers on false non-match rates at particular thresholds, i.e. $\mathrm{FNMR}(T)$.

5.4 Results

Figure 17 summarizes the false non-match rates for the 52 most accurate algorithms comparing mugshot photos. It does this for each of four race categories and two sexes ${ }^{13}$. Figure 18 takes the same approach but for 20 countries of birth and two age groups (over/ under 45). It summarizes comparison of high quality immigration

[^15]| Links: | Evec. Summary | False positive: Incorrect association of two subjects | 1:1 FMR | 1NFPIR | T >0 | \rightarrow FMR, FPIR $\rightarrow 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Tech. Summart | False negative: Failed association of one subject | $1: 1$ FNMR | 1:NFNIR | | \rightarrow FNMR, FNIR $\rightarrow 1$ |

Figure 17: For mugshot comparisons, the figure shows the distribution of FNMR values over the 52 most accurate veritication algorithms, by sex and race. The threshold was set for each algorithm to achieve FMR $=0.00001$ over all imposter comparisons. The line within each box is the median over those algorithms; the box itself spans the interquartile range (26 algorithms) and the lines here extend to minimum and maximum values. The small box on the left side indicates the accuracy for best aigorithm overall, on this dataset alphaface-001.
application photos with lower quality border crossing photos. These are described in Annex 2 and Annex 4 respectively.

We make the following observations.

- FNMR is absolutely low: In one-to-one verification of mugshots, the best algorithms give FNMR below 0.5% at the reasonably stringent FMR criterion of 0.00001 . FNMR is generally below 1% with exceptions discussed below. For the more difficult application-border crossing comparisons, the best algorithm almost always gives FNMR below 1%. These error rates are far better than the gender-classification error rates that spawned widespread coverage of bias in face recognition. In that study [5], two algorithms assigned the wrong gender to black females almost 35% of the time. The recognition error rates here, even from middling algorithms, are an order of magnitude lower. Thus, to the extent there are demographic differentials, they are much smaller than those that (correctly) motivated criticisms of the 2017-era gender classification algorithms.
- FNMR in African and African American subjecls: In domestic mugshols, the lowest FNMR in images of subjects whose race is listed as black. However, when comparing high-quality appliction photos with border-crossing images, FNMR is often highest in African born subjects. We don't formally measure contrast or brightness in order to determine why this occurs, but inspection of the border quality images shows underexposure of dark skinned individuals often due to bright background lighting in the border crossing environment. In mugshots this does not occur. In neither case is the camera at fault,

Dataset: Application vs. Border Crossing FMR: 0.000010 Sex: Female

False non-match rate (FNMR): Distribution over 52 most accurate algorithms
Figure 18: For the application - border crossing photo comparisons, the boxplots show the distribution of FNMR values over the 52 most accurate algorithms, by sex, country of birth, and age group. The threshold was set for each algorithm to achieve $F M R=0.00001$ over all imposter comparisons. The line within each box is the median over those algorithms; the box itself spans the interquartile range (26 algorithms) and the lines here extend to minimum and maximum values. The small box on the left side indicates the accuracy for best algorithm overall, on this dataset visionlabs-007.

Links:	Exec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1:N FPIR	$\mathrm{T} \gg 0$	$\rightarrow \mathrm{FMR}, \mathrm{FP}$ R $\rightarrow 0$
Links.	Tech. Summary	False negative: Failed association of one subject	1:1 FNMR	1N FiNIR		\rightarrow FNMR, FNIR $\rightarrow 1$

Figure 19: For one algorithm verifying mugshot images, the error tradeoff characteristics show false non-match vs, false match rates. The FMR estimates are computed for same-sex and same-race imposter comparisons. Each symbol (circle, triangle, square) corresponds to a fixed threshold - their vertical and horizontal displacements reveal, respectively, differences in FNMR and FMR between demographic groups. The vertical line through each symbol indicates uncertainty related to sample size - it spans 95% of bootstrap samples of the genuine scores. Annex 12 contains the corresponding figure for all algorithms.

- Women give higher FNMR: In most cases, algorithms give higher false non-match rates in women than men. Note that this is a marginal effect - perhaps 98% of women are still correctly verified - so the effect is confined to fewer than 2% of comparisons where algorithms fail to verify. It is possible that the error differences are due to relative prevalence some unknown covariate. There are some exceptions, however: In Kenya, Nigeria, Jamaica men give higher FNMR. This applies in Haiti and Ghana also but only for people aged 45 or over.

These aggregations of results over a large number of algorithms is intended to expose coarse differences between demographic groups. In so doing it hides that certain algorithms may differ from the trends evident in the Figure. Full error tradeoff characteristics appear in Annex 12.

The false negative results for law enforcement images apply to high quality mugshots, collected with deliberate consideration of standards. When image quality degrades, false negatives are expected to increase. We next consider results for the comparison of high quality Annex 2 application reference photos with Annex 4 border crossing images collected in a less controlled environment under some (implicit) time constraint. We report

Figure 20: For one algorithm verifying mugshots, the violin plots show native similarity score distributions. The horizontal line shows the threshold that gives $F M R=0.0001$ over all the imposter pairs. The imposters have the same sex and race. The upper figure shows genuine scores and the color indicates FNMR at the given threshold on a linear scale. The lower figure shows imposter scores with color indicating FMR on a logarithmic scale. FMR values below 10^{-5} are pinned to that value. Annex 15 contains the corresponding figure for all algorithms.
results in two ways:
D. Per algorithm: Annex 14 shows FNMR by country of birth for two sexes and two age groups (above and below age 45).

- As Figure 22 heatmap showing results for all algorithms and all countries of birth. Each FNMR is the arithmetic mean of the four FNMR estimates for male and female and age over and under 45. The rows of the figure are sorted in order of mean FNMR, the mean being taken over all twenty four countries. The columns of the figure are sorted in order of mean FNMR from the 50 most accurate algorithms - this statistic was chosen so that high FNMR estimates from poor algorithms did not skew the results.

From these figure we note the following:

- Wide variation across algorithms: False non-match rates range from near 0.1% up to above 10%. This two-orders-of-magnitude range shows that some algorithms are intolerant of the quality problems inherent in the image the border crossing images. These problems are: low contrast, non-centered and cropped faces, non-frontal pose, and poor resolution, in part due to poor compression.
- The most accurate algorithms give low FNMR: The most accurate algorithms given FNMR below 1% for almost all countries and demographic groups. For example, the Visionlabs-007 algorithm has outliers only for Liberian and Somali women under the age of 45 , for whom ENMR is below 1.4%.
- Lower variation across countries: For the more accurate algorithms, false non-match rates generally range by a factor of two or three from the left side of Figure 22 to the right i.e. FNMR in El Salvactor is almost always lower than that in Somalia.
- No clear patterns by age and sex: By considering the Figures of Annex 14, the differences between the over-and under- 45 s is often small, varies by country and by algorithm. However, broad statements do not mean that certain algorithms do not exhibit demographic differentials.
- Higher FNMR in subjects from Africa and the Caribbean: The heatmap is constructed with countries appearing in order of the mean FNMR over the fifty most accurate algorithms. This reveals higher FNMR in Africa and the Caribbean. After those two regions, the next highest FNMR is in the Eastern Europe countries.

The low error rates stem from efforts over the last decade to train algorithms that are invariant to nuisance variables such as non-frontal pose and poor contrast. The absolute magnitude of FNMR drives inconvenience, In many applications, any subject experiencing a false rejection could make a second attempt at recognition.

	Erec. Summara	False positive: Incorrect association of two subjects	1.1 FMR	1NFPIR	$\mathrm{T} \gg 0$	$\rightarrow \mathrm{FMR}, \mathrm{FP} \mathbb{R} \rightarrow$
Links:	Tech. Summary	False negative: Failed association of one subject	1.1 FNMR	1/N FNIR		\rightarrow FNMR, ENIR $\rightarrow 1$

Figure 21: For 24 countries the figure shows false negative rates when the reference algorithm is used to compare two photos of subjects from the countries identified in the respective columns. The square box gives the median false non-match rate computed over 2000 bootstrap resamples of the genuine scores. The ends of the line span 95% of those re-samples, thereby giving a measure of uncertainty in the FNMR estimate. The threshold is set to a fixed value everywhere; it is the lowest value that gives $F M R \leq 0.00001$. Anmex 14 contains the corresponding figure for all algorithms.

Why these effects occur would require some multivariate analysis of image- and subject-specific properties, We suggest that analysis might start with measurement of image related quantities from the digital images to include such as contrast, intensity, areas of over and under exposure, presence of cropping, and head orientation. For tools, mixed-effects regression models could be an initial starting point [4] but such work would need to address correlation between quantíties such race and contrast. We have not yet initiated such work and it is possible that such analysis would be incomplete due to influential but unknown covariates. In particular, given the border crossing images were collected with cameras mounted at fixed height and are steered by the immigration officer toward the face it is possible that subject height influences genuine matching scores. For example very tall subjects might be subject be underexposed because strong ceiling lights in the background might cause underexposure. Inspection of failure cases invariably leads to insight in such cases. We have not yet conducted that work.

Figure 22: For 24 countries in seven regions the figure shows verification false non-match rates when the reference algorithm is used to compare two photos of subjects from the countries identified in the respective columns. The FNMR value is the mean over men/women and over/under age 45 , so represents FNMR in situations where those four populations were balanced. The threshold is set to a fixed value everywhere; is is the lowest value that gives $F M R \leq 0.00001$. Each cell depicts FNMR on a logarithmic scale. The text value is $\log _{10}(F N M R)$ with large negative values encoding superior false match rates.

cs	Exrc. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1NN FPIR	$T \gg 0$	\rightarrow
ks.	TECG. Summary	False negative: Failed association of one subject	1:1 FNMR	$1: N$ FNIR		\rightarrow FNMR, FNIR $\rightarrow 1$

6 False negative differentials in identification

The three identification trials all use just mugshot photographs. They were conceived of to isolate specific demographic factors as follows.
\Rightarrow Sex: We construct a gallery containing 800000 white men, and 800000 white women, aged $20-40$. We search that with mated probes taken in a different calendar year to the enrolled photo but no longer than 5 years after. We search with balanced sets of non-mate probes, also aged 20-40.

Sex: We construct a gallery containing 500000 black men, and 500000 black women, aged $20-40$. We search that with mated probes taken in a different calendar year to the enrolled photo but no longer than 5 years after. We search with balanced sets of non-mate probes, also aged 20-40.

D Race: We construct a gallery containing 800000 black men, and 800000 white men, aged 20 - 40 . We search that with mated probes taken in a different calendar year to the enrolled photo but no longer than 5 years after. We search with balanced sets of non-mate probes, also aged 20-40.

More detail appears in Annex 16 . In each case the mated probes are used to measure false negative identification rate, and the nonmated probes are used to measure false positive identification rate. These tests all employ domestic mugshots, and only younger adults. Further work will extend analysis to a global population with more range in age,

6.1 Metrics

The metrics appropriate to identification have been detailed in section 3.2 . These are related to particular applications in Figure 23 reflecting two modes of operation. The general metric FNIR (N, R, T) covers both as follows:
Δ Investigation: For investigators willing to traverse long candidate lists in pursuit of a lead, the metric $\operatorname{FNIR}(N, R, 0)$ is the proportion of missed mates when searching an N-enrollee gallery and considering the R most similar candidates without applying a threshold $(T=0)$. The utility of longer lists is shown by plotting FNIR vs. R.

1- Identification: For those applications where a non-zero threshold is used to only return results when a search has a likely enrolled mate, the metric is $\mathrm{FNMR}(N, R, T)$. The use of thresholds $T>0$ will suppress many false positives, but will also elevate false negatives, the tradeoff being shown as a plot of FNTR(T) vs. $\operatorname{FPIR}(T)$.

					$\mathrm{T}>0$	
Links:	TECe SUNMAR:	False positiye: Incortect association of two subjects False negative: Failed association of one subject	1.1 FNMR	$\begin{aligned} & \text { 1ANFPMR } \\ & \text { IN FANR } \end{aligned}$	T $\gg 0$	$\begin{aligned} & \rightarrow \text { FMR, FPIR } \rightarrow 0 \\ & \rightarrow \text { FNMR, FNIR } \rightarrow 1 \end{aligned}$

Figure 23: Identification applications and relevant metrics.

	ExEc Summary	False positive- Incorrect association of two subjects	1:1 FMR	1N FPIR	$T>0$	\rightarrow FMR, FPIR $\rightarrow 0$
Links:	TECH. Summary	False negative Failed association of one subject	$1: 1$ FNMR	1 N FNIR		FNMR, FNIR $\rightarrow 1$

6.2 Results

Figures 24 and 25 show identification error rates for two algorithms. Flots for all algorithms are included in Annex 16. In each case, the upper panels show FNIR vs R. The lower panels show FNIR vs. FPIR. We make the following observations

D Differentials by race in men: From the left-side panels, black men invariably give lower false negative identification rates than white men. This applies in the investigate and identification modes, and particularly for the more accurate algorithms. The differentials are often small, well below a factor of two. The are some exceptions including algorithms from 3DiVi, Aware, Eyedea, Idemia, Kedacom, Tevian and Vocord,
> Differentials between the sexes: Women invariably give higher false negative rates than men. This applies within both racial groups. There are exceptions, notably that searches of white women are more likely to produce the correct result in the top ranks than are search of men. This is less true for black women. A possible mechanism for this is available from section 4 verification results, namely that black women tend to produce high one-to-one false match rates. High non-mate scores may be displacing the correct black women from rank 1 position.
8. Low FPIR is not attainable: The error tradeoff characteristics show a rapid increase FNIR as the threshold is increased to reduce FPIR. For example, in FNIR Figure 24, FNIR reaches 50\% when FPIR is reduced to 0.0001 . This is due to the presence of high scoring non-mates in the imposter searches. They can occur for several reasons. First, ground truth identity labeling errors in which photos of a person are in the database under multiple IDs. These cause apparent false positives. We discount this because the mugshot ground truth integrity is excellent, and underpinned by ten-print fingerprint matching. A second reason is the presence of twins in the population. Given the population represented by the dataset, we estimate a few percent of the United States adult population is present in the dataset. Given well documented twinning rates ${ }^{14}[27]$, we expect twins to be in the data, both identical and, more commonly, fraternal. Siblings will be expected to give elevated similarities along the same lines.

1> Higher false positive identification rates in black women: The lines connecting points of fixed threshold are often long and slanted in the error tradeoff plots in the center column of the bottom row - see Figure 24, for example. This is a common occurence revealing an order-of-magnitude increase in FPIR, with magnitudes varying by algorithm. Notably some algorithms do not exhibit this excursion. For example, the algorithm featured in Figure 25 gives much smaller excursions in FPIR.

[^16]| | Exec. Summart | False positive: Incorrect association of two subjects | 1:1 FMR | 1NFPRIR | $T \gg 0$ | \rightarrow FMR, FPRR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Links: | Tech. Sumpary | False negative: Failed association of one subject | 1.1 FNMR | IN FNIR | | \rightarrow FNMR, FNIR $\rightarrow 1$ |

Figure 24: For mugshot identification, the top row shows false negative identification "miss" rates as a function of rank, a metric appropriate to investigators traversing candidate lists for lead generation. The bottom row shows miss rates as a function of false positive identification rate, where a threshold is swept from a low value on the right to high values on the left. This metric is appropriate to organizations for which the volume of searches is high enough that they cannot afford labor to review results from every search. The left panels show the effect of race in young men. The center and right panels show difference between men and women, in black then white subjects respectively. The grey lines join points of equal threshold. The four thresholds are chosen to give FPIR of $\{0.0003,0.003,0.03,0.3\}$ respectively for one baseline demographic, here white males. The figure applies to one algorithm, provided to NIST in August 2019. The corresponding figures for all identification algorithms appear in Annex 16.

Figure 25: For mugshot identification, the top row shows false negative identification "miss" rates as a function of rank, a metric appropriate to investigators traversing candidate lists for lead generation. The bottom row shows miss rates as a function of false positive identification rate, where a threshold is swept from a low value on the right to high values on the left. This metric is appropriate to organizations for which the volume of searches is high enough that they cannot afford labor to review results from every search. The left panels show the effect of race in young men. The center and right panels show difference between men and women, in black then white subjects respectively. The grey lines join points of equal threshold. The four thresholds are chosen to give FPIR of $\{0.0003,0.003,0.03,0.3\}$ respectively for one baseline demographic, here white males. The figure applies to one algorithm, provided to NIST in June 2018. The corresponding figures for all identification algorithms appear in Annex 16.

Links:	ExEC. SUMMARY	False positive: Incorrect association of two subjects	1:1 FMR	1:NFPIR	$\mathrm{T} \gg 0$	$\rightarrow \mathrm{FMR}, \mathrm{FPIR} \rightarrow 0$
Links:	Tech. Summary	False negative: Failed association of one subject	1:1 FNMR	1:N FNIR		FNMR, FNIR $\rightarrow 1$

7 False positive differentials in identification

The section addresses whether identification algorithms exhibit similar false positive differentials to verification algorithms. We first note that large-scale one-to-many identification deployments typically operate at false match rates much lower than those targeted in verification applications. It is typical in verification access control to target false match rates (FMR) between 0.00001 and 0.001 , i.e. between one per hundred thousand and one per thousand. Identification applications, howveer, often enroll very large numbers of individuals numbering into the 10 s or 100 s of millions. If such systems are configured with thresholds aimed at producing false positive outcomes say one in 100 times, i.e. $\mathrm{FPIR}=0.01$, then the implied likelihood that a comparison will yield a false match is given by this formula

$$
\begin{equation*}
\mathrm{FMR}=\frac{F P I R}{N} \tag{10}
\end{equation*}
$$

where N is the size of the enrolled population. With FPIR $=0.01$, and $\mathrm{N}=10^{6}$ s this formula implies FMR= 10^{-8}. The formula gives a first order equivalence of identification with verification: the former needs low false positive rates in large galleries. Metrics are discussed in section 3.

Some one-to-many search algorithms implement a $1: \mathrm{N}$ search of a probe image as $\mathrm{N} 1: 1$ comparisons of the probe with the N enrolled items. This is followed by a sort operation which yields N candidates sorted in decreasing order of similarity. The result of that is relurned in either of two ways; The system will return an operator-specified number of candidates, or it will return however many candidates are above an operatorspecified threshold ${ }^{15}$. In the case where a threshold is used, the number of candidates returned will be a random-variable that is dependent on the image data itself.

Other algorithms do not implement 1:N search as $\mathrm{N} 1: 1$ comparisons. Instead they might employ a set of fastsearch algorithms aimed at expediting search $[2,19,21,26]$. These include various techniques to partition the enrollment data so that far fewer than N comparisons are actually executed. However, this does not mean that false positive occurences will be reduced because the algorithms are still tasked with finding the most similar enrollments.

For the three experiments listed in section 6, Figure 26 shows median scores returned by one identification algorithm when non-mated searches are conducted. It is clear that if a threshold is applied there will be demographic differences in the number of candidates returned, and in the score values, Such behavior applies to many algorithms - see Annex 17.

This effect disappears in the algorithm featured in Figure 27. This is an important result because it implies much more equitable likelihoods of false positives. This is especially important result in negative identification

[^17]| | Evec, Summary | False positive: Incorrect association of two subje | 1:1 FMR | 1NFPPR | $\mathrm{T} \gg 0$ | \rightarrow FMR, FPIR $\rightarrow 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Links: | Tech. Sumparar | False negative: Failed association of one subject | 1.1 FNMR | 1N FNIR | T>0 | \rightarrow FNMR, FNIR $\rightarrow 1$ |

Figure 26: For searches of Asian, black, white men and women's faces into mixed galleries of mugshot photos the heatmaps show median similarity scores for candidates placed at rank 1 to 50 . The upper four panels are produced in normated searches; the lower four from mated searches. The left-side panels are produced from searches into galleries with 12000000 people enrolled. The right-side uses galleries with $N=1600000$ enrolled. The "lifetime consolidated" and "recent" labels refer to inclusion of multiple images per person, or just one - see [17].
Contrast the behavior here with that in Figure 27 and the corresponding figures for developers Aware, Idemia, NEC, Tevian, and Toshiba that are included in Amex 17.
applications where the prior probability of a searched person actually being is in the database is low, e.g. cardsharp surveillance in a casino, or soccer hooligans at a sports game ${ }^{16}$. The lack of an effect on false positive identification rates is evident in Figure 25 where the grey lines join points of equal threshold. From left-toright, the FPIR values for black and white males, black men and women, and white men and women are closely similar. The more normal behavior (see Figure 24 and Annex 16) is for larger shifts in false positive rates.

We now consider the implications for investigative "lead generation" applications. In such cases, algorithms return a fixed number of candidates and human reviewers compare the probe photo alongside each candidate gallery photo to determine if the photos are a match. In mugshot-mugshot searches the reviewer will very often look no further than rank 1 per the very high accuracy results documented in NIST Interagency Report

[^18]| Links: | Exec. Summaty | False positive: Incorrect association of two subjects | $1: 1 \mathrm{FMR}$ A.1 FNMR | 1:NFPRR | $\mathrm{T} \gg 0$ | $\rightarrow \mathrm{FMR}, \mathrm{FPIR} \rightarrow 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Links: | Tech-Summar | False negative: Failed association of one subject | 1:1 FNMR | 1:N FNIR | | $\rightarrow \text { FNMR, FNII } \rightarrow 1$ |

Figure 27: For searches of Asian, black, white men and women's faces into mixed galleries of mugshot photos the heatmaps show median similarity scores for candidates placed at rank 1 to 50 . The upper four panels are produced in nonmated searches; the lower four from mated searches. The left-side panels are produced from searches into galleries with 12000000 people enrolled. The right-side uses galleries with $N=1600000$ enrolled. The "lifetime consolidated" and "recent" labels refer to inclusion of multiple images per person, or just one - see [17]. The uniformity of the scores across demographic groups is in contrast to that evident in Figure 26 and many others in the Annex 17 compendium.

8271. That report also includes a workload measure summarizing the expected number of candidates that will have to be reviewed before a mate is located. A very important parameter in such applications, however, is the prior probability that a mate is actually present. In boarding a cruise ship for example, almost everyone attempting to board would be present in the gallery. In a casino application aimed at detecting "high rollers" the likelihood a patron of the casino is in that set is much lower. In such cases a human reviewer, if so employed, would in most searches review all say 50 candidates on the list. That's laborious and may not be tenable from an operations research perspective due to fatigue and reward factors in humans.

But in whatever circumstances human reviewers are tasked with reviewing candidate lists, how are demographic differentials such as those in Figure 26 expected to influence the human? The human will see fifty candidates regardless. However, if those candidates are accompanied by scores, presented as text in a GUI for example, the reviewer will see higher scores in the black female population and potentially elsewhere. Over time this may influence the human, though one earlier study [12] looked at cognitive bias issues in the human review of fingerprint search results, without demographic effects, and found scant evidence that scores influence the reviewer. That study did, however, find that just the order in which candidates are presented to reviewers affects both false positives and false negatives. For example, reviewers are more likely to miss (i.e. a false negative) a mated candidate that appears far down the candidate list. The issues involved in human review are beyond the scope of this document, but full consideration of systems comprised of automated face search algorithms and human reviewers is an experimental psychology, human factors and operations research issue.

	Esec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1N FPRR	$T>0$	$\rightarrow \mathrm{FMR}, \mathrm{FP}$ IR $\rightarrow 0$
Links:	TECA Summari	False negative: Failed association of one subject	1:1 FNMR	1:N ENIR		\rightarrow FNMR, ENIR $\rightarrow 1$

8 Research toward mitigation of false negatives

False negative error rates, and demographic differentials therein, are reduced in standards-compliant images. This motivates the following two research and development possibilities.
\triangleright Improved standards compliance: The ISO/TEC 19794-5 standard includes requirements regulating geometry and exposure. Recent research [24] noted that higher quality images, as determined by an automated quality assessment algorithm, yields a reduced false negative differential. While commercial packages exist for the automated assessment of quality, and NIST has an ongoing assessment of the underlying algorithms, rejection of single images on quality grounds can itself have demographic problems [1]. The ISO/IEC SC 37 biometrics subcommittee has recently initiated work on quality (ISO/IEC 29794-5 and 24357).
\triangleright Face-aware cameras: The same ISO/IEC committee has recently initiated work on specifications for capture subsystems that may require real-time face detection, pose estimation, and exposure measurement. Analogous "auto-capture" quality control mechanisms exist in iris and fingerprint scanners. That standard, ISO/IEC 24358, will be developed through 2020 with completion expected in 2021 . Participation is open via national standardization groups.

Along similar lines further research into automated image quality assessment, and particularly specifications for closed-loop face-aware capture would prove valuable in averting low-contrast and over-and underexposed images. Many enrollment operations still rely on documentary photography standards with cameras that are not detecting and metering off faces.

This work would be supported by research into two further topics:
Analysis: There is a need for improved models of demographic effects, particularly to how subject-specific properties including phenotypes, imaging artefacts and algorithms interact. Such models would extend work [9$]$ in separating the relative contributions of at least, sex, age, race and height. Efforts to automatically estimate phenotypic information from images will involve algorithms that may themselves exhibit demographic differentials. Such work will need to address this possibility.

Information theoretic analysis: Given the potential for poorly illuminated photographs to produce false negatives, via under- or over-exposure of dark or light skin, an information theoretic approach to characterize algorithmic response to poor lighting would be useful for future standardization. In particular, the ISO/IEC 19794-5 standard has, since 2004, required portrait photos to have at least 7 bits of content in each color charnel. Such work should quantify both false negative and false positive dependence.

	Esec. Summary	False positive: Incorrect association of two subjects	1:1FMR	1NFPIR	$\mathrm{T} \gg 0$	$\rightarrow \mathrm{FMR}, \mathrm{FP} \mathbb{R} \rightarrow$
Links:	TECA. Summary	False negative: Failed association of one subject	1:1 FNMR	1:N FNIR		\rightarrow FNMR, ENIR $\rightarrow 1$

9 Research toward mitigation of false positives

9.1 Summary

The threshold manipulation strategies described above would be irrelevant if the algorithm developer provided software with homogeneous false match rates. That will prove impossible as there will always be some distribution around a mean - the goal should be much more homogeneous false match rates than is currently the case.

9.2 Algorithm training

A longer-term mitigation is prompted by our observation that many algorithms developed in China do not give the elevated false positive rates on Chinese faces that algorithms developed elsewhere do. This affirms a prior finding of an "other-race effect" for algorithms [33] though that paper did not separate false positive from false negative shifts. This suggests that training data, or perhaps some other factor intrinsic to the development, can be effective at reducing particular false positive differentials. Thus, the longer-term mitigation would be for developers to investigate the utility of more diverse, globally derived, training data. Absent such data, developers might consider whether their cost functions can be altered to reduce differentials. One developer advanced such a concept in November 2018 [15].

9.3 Greater discriminative power

Face recognition algorithms measure similarity between face images. Facial appearance is partially determined by genes, the phenotypic expression of which determines skin tone and a large set of characteristics related to shape of the face. In NIST recognition tests [17], identical twins invariably cause false positives at all practical operational thresholds. Twins are characterized by very similar features given identical genes. Similarities in faces in fraternal twins [17] are expected to extend also to siblings (which also share half of the genes), and then to more distant relatives. In 2004, an algorithm was patented that can correctly distinguish wins [US Patent: US7369685B2]; it operates by extracting features from skin texture (adjacent to the nose, and above the eyebrows). This algorithm requires high resolution and, moreover, knowledge that any given image has that resolution. However, contemporary deployments of face recognition are very often based on processing of images at or below VGA spatial sampling rates (i.e., 480×640 pixel images), and this is often insufficient for skin texture to be viable. The human reviewer community has long specified much higher resolution for forensic purposes (see ANSI/NIST Face Acquisition Profiles).

	Evec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	10. FPR	$I \gg 0$	$\rightarrow \mathrm{FMR}, \mathrm{FPIR} \rightarrow 0$
Links:	TECH. Sumimarer	False negative: Failed association of one subject	1:1 FNMR	IN FNIR		\rightarrow FNMR, FNIR $\rightarrow 1$

9.4 Collection and use of face and iris

The texture of the human iris is known to have a structure that when imaged and processed by published feature extraction algorithms [11,29] will correctly discriminate between identical twins [40]-something that contemporary marketplace face algorithms do not [17]. The reason for this appears to be that the iris features detected by automated algorithms are not genetically determined. However genetics research [25] does show iris textures have some genetic linkage, so a better characterisation of the tails of the impostor distribution is needed, at least for large scale one-to-many identification. Nevertheless, a 2019 DHS Science and Technology study noted that false positives are no higher within individuals of the same sex, age and race as they are across those groups [39]. As shown in Figure 4 and Annex 8 that is not the case for face recognition. NIST has near-term plans to investigate the impostor distribution in twins more fully.

Given the marketplace presence of multiple cameras that collect face and iris essentially simultaneously, one approach to consider for mitigation of false positive differentials in face recognition would be for face records to include adjunct iris images. The standards infrastructure is in place for this (ANSI/NIST Type 17, ISO/IEC 39794-6, and ICAO 9303 Data Group 4). This would afford very low false positive rates.

The apparent lack of genetic influence, and demonstrated low false match likelihoods, has been the primary property in establishing the use of the iris for the identification of individuals in large populations - most notably in the Indian National ID program Aadhaar. The iris recognition industry has multiple camera developers, multiple algorithm suppliers, and image interchange and quality standards that support interoperable recognition across eameras.

These aspects afford solutions to higher and heterogeneous false positive rates in face recognition. The first is simply to replace face with iris. There would be advantages and disadvantages to this - detailing and weighing those is beyond our scope here. However a second solution would be to augment face with iris, to produce a compound biometric "face-and-iris" 17 . This is made possible by the marketplace availability for at least a decade now of cameras that collect iris and face images essentially simultaneously. Recognition of the combined biometric would involve a particular kind of biometric fusion that in which both the face and iris must match (against respective thresholds) so as to limit false positives. This differs from some convenience-driven implementations that authenticate a person with either face or iris alone.

Use of iris in some applications, for example surveillance, is limited by the difficulty and expense of imaging the iris at long distances.

We don't mention fingerprints in this context because even though genetic influence is considered to be absent

[^19]

Figure 28: The figure shows the increases in FNMR implied by increasing the operating threshold to achieve the target FMR on the high-FMR demographic, Y.
or minimal, the collection of both fingerprint and face is not simultaneous.

9.5 Threshold elevation

We detail one mitigation of heterogeneous variable false match rates, and its consequences, as follows. The explanation uses a graphical construct based on the error tradeoff characteristics shown in Figure 28.
$>$ We start with a target false match rate $\mathrm{FMR}_{\text {POLICY }}$ that has been set to implement some security objective. This value, in a verification application might reasonably be set to say 1 in 5000 (i.e. 0.0002). This is implemented by setting a threshold T_{1}. Suppose that this threshold was perfectly calibrated for Demographic $X_{i, e} \operatorname{FMR}\left(T_{1}\right)=$ FMR $_{\text {policy }}$. This corresponds to the point P1.

- Now suppose that we later discover, perhaps as a result of some biometric performance test or audit that, for some new group Demographic Y , that the observed false match rate at the fixed threshold T_{1} is much higher, a factor of five say (0.001). This point P2 therefore represents therefore a failure to meet the original security objective for that group.

D To bring the overall system into policy compliance, the system owner consults the error tradeoff charac-

Figure 29: The figure shows the effect of setting thresholds to achieve the target FMR on demographics X and Y.
teristic for Demographic Y and notes that by elevating the threshold to T_{2}, the false match rate would be returned to policy compliance, at point P3.
Δ The effect of this however is that FNMR is necessarily elevated both demographic groups. This is because the new threshold T_{2} is higher than T_{1}, and applies to all transactions from all demographics. These increases are shown as $\triangle F N M R_{X}$ and $\triangle F N M R_{Y}$ would have a magnitude that depends on the gradients of the error-tradeoff characteristics (which may differ). The only gain is a reduction in FMR for Demographic X, to a value which beats the original target policy.

Using this kind of construct, we see the benefit in having a biometric algorithm for which false match rates are homogenous i.e. do not vary (much) over any demographics.

The above argument assumes that the original high $\mathrm{FMR}_{\mathrm{Y}}\left(\mathrm{T}_{1}\right)$ is indeed problematic. It may be tolerable in cases where individuals in that Demographic are rare, e.g. elderly persons entering a gym or nightclub. Any decision to not elevate the threshold to T_{2} should be deliberated in the security context defined by threat, risk and cost.

9.6 Explicit thresholds for each demographic

In this section we discuss the suggestion [23] to address heterogeneous false match rates by assigning a threshold to each demographic. The proposal is for a verification system to set the threshold each time a subject executes a verification transaction tailoring it on the basis of who is using the system. Referencing Figure 29, this would correspond to adopting thresholds T_{1} and T_{2} (i.e, points P1 and P3) on-the-fly. How to do this presents a problem. Naively one could encode in an identity document (e.g. a passport) some indication of the demographic group (e.g. female, middle aged, south Asian) and the system would read this information, consult a lookup table, and set T accordingly. This would be effective for genuine legitimate users of the system. The security consequences of this are, however, more complicated. Consider what an imposter would do given knowledge that thresholds are variable.
b. If the imposter were from a demographic for which the threshold is low, he would procure / steal a credential from somebody of the same age, sex and ethnicity. This would be typical behavior for any imposter. However, if particular countries passports were known to be used with low-thresholds, we d expect genesis of a black-market for stolen credentials in those places.
\& If the imposter were from a demographic for which the threshold is high he might procure / steal a credential from somebody in one of the low-threshold demographics, matching age and sex minimally the same sex. To better induce a false match the imposter would still need to have the same age, sex and ethnicity. This would be typical behavior anyway.
Note that societal construction will often naturally afford opportunities for imposters to have access to identity credentials from other persons who, naturally, have the same ethnicity, sex and age group.

Another aspect to this approach is that it shifts responsibility for threshold management to the system owner rather than the cleveloper. That may sound fully appropriate but imposes two responsibilities on the operator: First, figuring out what the thresholds should be via some appropriate testing, and secondly to implement the strategy with capture of demographic information and use of that in software.

| Links: |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EXEC. SUMMMARY |
| Tech. Sumicari |\quad| False positive: Incorrect association of two subjects |
| :--- |
| False negative: Failed association of one subject |

References

[1] December 2016. https://www.telegraph.co.uk/technology/2016/12/07/robot-passport-checker-rejects-asian-mans-photo-having-eyes $/$.
[2] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
[3] L. Best-Rowden and A. K. Jain. Longitudinal study of automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1):148-162, Jan 2018.
[4] J. Ross Beveridge, Geof H. Givens, P. Jonathon Phillips, and Bruce A. Draper. Factors that influence algorithm performance in the face recognition grand challenge, Computer Vision and Image Understanding, 113(6):750-762, 2009.
[5] Joy Buolanwini. Gender shades: Intersectional phenotypic and demographic evaluation of face datasets and gender classifiers. Technical report, MTT Media Lab, 012017.
[6] I. Campbell and M. Savastano. Iso/iec 22116 identifying and mitigating the differential impact of demographic factors in biometric systems. Technical report, ISO/IEC TTC 1, SC 37, Working Group 6, http://iso.org/standard/72604.htmi, 112018.
[7] Jacqueline G. Cavazos, Eilidh Noyes, and Alice I. OrToole. Learning context and the other-race effect: Strategies for improving face recognition. Vision Research, 157:169-183, 2019. Face perception: Experience, models and neural mechanisms.
[8] Jacqueline G. Cavazos, P. Jonathon Phillips, Carlos D. Castillo, and Alice J. OToole Accuracy comparison across face recognition algorithms: Where are we on measuring race bias? In https://arxiv.org/abs/1912.07398, 122019.

19] Cynthia Cook, John Howard, Yevgeniy Sirotin, Jerry Tipton, and Arun Vemury. Demographic effects in facial recognition and their dependence on image acquisition: An evaluation of eleven commercial systems. IEEE Transactions on Biometrics, Behavior, und Identity Science, PP:1-1, 022019.
[10] White D., Kemp R. I., Jenkins R., Matheson M, and Burton A. M. Passport officers errors in face matching. PLoS ONE, 9(8), 2014. e103510. doi:10.1371/journal. pone.0103510.
[11] I. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systens for Video Technology, 14(1):21-30, Jan 2004.

[12] Thiel Dror and Kasey Wertheim. Quantified assessment of afis contextual information on accuracy and reliability of subsequent examiner conclusions. Technical Report 235288, National Institute of Justice, Tuly 2011.
[13] H EI Khiyari and Wechsler H. Face verification subject to varying (age, ethnicity, and gender) demographics using deep learning. Joumal of Biometrics and Biostatistics, 7:323, 11 2016. doi:10.4172/21556180.1000323.
[14] C. Garvie, A. Bedoya, and J. Frankle. The perpetual line-up: Unregulated police face recognition in america. Technical report, Georgetown University Law School, Washington, DC, 102018.
[15] Stephane Gentric. Face recognition evaluation@idemia. In Proc. International Face Performance Conference, National Institute of Standards and Technology NIST, Gaithersburg, MD, November 2018.
[16] Patrick Grother, Mei Ngan, and Kayee Hanaoka. Face recognition vendor test (frvt) part 1: Verification. Interagency Report DRAFT, National Institute of Standards and Technology, October 2019. https:// nist.gov/programs-projects/frvt-11-verification.
[17] Patrick Grother, Mei Ngan, and Kayee Hanaoka. Face recognition vendor test (frvt) part 2: Identification. Interagency Report 8271, National Institute of Standards and Technology, September 2019. https: / / doi.org/10.6028/NIST.IR. 8271.
[18] Patrick Grother, George W. Quinn, and Mei Ngan. Face recognition vendor test - still face image and video concept, evaluation plan and api. Technical report, National Institute of Standards and Technology, 7 2013. http://biometrics.nist.gov/cs links/face/frvt/frvt2012/NIST_FRVT2012 api_Aug15.pdf.
[19] Feng Hao, John Daugman, and Piotr Zielinski. A fast search algorithm for a large fuzzy database. IEEE Transactions on Information Forensics and Security, 3(2):203-212, 2008.
[20] John J. Howard, Yevgeniy Sirotin, and Arun Vermury. The effect of broad and specific demographic hoinogeneity on the imposter distributions and false match rates in face recognition algorithm performance. In Proc. 10-th IEEE International Conference on Biometrics Theory, Applications and Systems, BTAS 2019, Tampa Florida,USA, September 2019.
[21] Masato Ishii, Hitoshi Imaoka, and Atsushi Sato. Fast k-nearest neighbor search for face identification using bounds of residual score. In 2017 12th IEEE International Conference on Automatic Face \& Gesture Recognition (IG 2017), pages 194-199, Los Alamitos, CA, USA, May 2017. IEEE Computer Society,
[22] B. F. Klare, Burge M. I., Klontz J. C., Vorder Bruegge R. W., and Jain A. K. Face recognition performance: Role of demographic information. IEEE Trans. on Information Forensics and Security, 7(6):1789-1801, 92012.

	Esiec. Summary	False positive: Incorrect association of two subjects	1:1 FMR	1NFPIR	$\mathrm{T}>0$	$\rightarrow \mathrm{FMR}, \mathrm{FPIR}$
Links:	Tech Summarey	False negative: Failed association of one subject	$1: 1 \mathrm{FNMR}$	1:N FNITR		\rightarrow FNMR, FNIR $\rightarrow 1$

[23] K. S. Krishnapriya, Kushal Vangara, Michael C. King, Vitor Albiero, and Kevin Bowyer. Characterizing the variability in face recognition accuracy relative to race. CoRR, abs/1904.07325, 2019. http://arxiv.org/abs/1904.07325.
[24] K. S. Krishnapriya, Kushal Vangara, Michael C. King, Vitor Albiero, and Kevin Bowyer. Us study: better image quality could cut face system bias. Biometric Technology Today, 2019(5):11-12, 2019.
[25] Mats Larsson, David L. Duffy, Gu Zhu, Jimmy Z. Liu, Stuart Macgregor, Allan F. McRae, Margaret J. Wright, Richard A. Sturm, David A. Mackey, Grant W. Montgomery, Nicholas G. Martin, and Sarah E. Medland. GWAS findings for human iris patterns: Associations with variants in genes that influence normal neuronal pattern development. American Journal of Human Genetics, 89(2):334 343, August 2011.
[26] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016.
[27] Joyce A. Martin, Brady E. Hamilton, Michelle J.K. Osterman, Anne K. Driscoll, , and Patrick Drake. National vital statistics reports. Technical Report 8, Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, Division of Vital Statistics, November 2018.
[28] Dana Michalski, Sau Yee Yiu, and Chris Malec. The impact of age and threshold variation on facial recognition algorithm performance using images of children. In International Conference on Biometrics, February 2018.
[29] D. M. Monro, S. Rakshit, and D. Zhang. Det-based iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4):586-595, April 2007.
[30] Vidya Muthukumar. Color-theoretic experiments to understand unequal gender classification accuracy from face images. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
[31] Vidya Muthukumar, Tejaswini Pedapati, Nalini Ratha, Prasanna Sattigeri, Chai-Wah Wu, Brian Kingsbury, Abhishek Kumar, Samuel Thomas, Aleksandra Mojsilovic, and Kush R. Varshney, Understanding unequal gender classification accuracy from face images. CoRR, abs/1812.00099, November 2018 ,
[32] P. Jonathon Phillips, J. Beveridge, Bruce Draper, Geof Givens, Alice O'Toole, David Bolme, Joseph Dunlop, Yui Lui, Hassan Sahibzada, and Samuel Weimer. The good, the bad, and the ugly face challenge problem. Image and Vision Computing, 30:177185,03 2012.
[33] P. Jonathon Phillips, Fang Jiang, Abhijit Narvekar, Julianne Ayyad, and Alice J. O'Toole. An other-race effect for face recognition algorithms. ACM Trans. Appl. Percept., 8(2):14:1-14:11, February 2011.

[34] P. Jonathon Phillips, Amy N. Yates, Ying Hu, Carina A. Hahn, Eilidh Noyes, Kelsey Jackson, Jacqueline G. Cavazos, Geraldine Jeckeln, Rajeev Ranjan, Swami Sankaranarayanan, Jun-Cheng Chen, Carlos D. Castillo, Rama Chellappa, David White, and Alice I. O'Toole. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences, 115(24):6171-6176, 2018.
[35] P.J. Phillips, P. Grother, R, J. Micheals, D. M. Blackburn, E. Tabassi, and M. Bone. Face recognition vendor test 2002. Evaluation Report IR 6965, National Institute of Standards and Technology, www.itl.nist.gov/iad/894.03/face/face.html or www.frvt.org, March 2003.
[36] Inioluwa Raji and Joy Buolamwini. Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial AI products. In Conference on AI, Ethics and Society, pages 429 435, 012019.
[37] K. Ricanek and T: Tesafaye. Morph: a longitudinal image database of normal adult age-progression. In 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pages 341-345, April 2006.
[38] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. International Conference on Learning Representations, volume https://arxiv.org/abs/1409.1556v6, 2015.
[39] Yevgeniy Sirotin. A comparison of demographic effects in face and iris recognition. Technical report, Iris Experts Group, Gaithersburg, MD, 62019.
[40] Zhenan Sun, Alessandra Paulino, Jianjiang Feng, Zhenhua Chai, Tieniu Tan, and Anil Jain, A study of multibiometric traits in identical twins. Proc. of the International Society of Optical Engineering, 7667, 042010.
[41] Darrell M. West. 10 actions that will protect people from facial recognition software. Technical report, Brookings Institution, Artificial Intelligence and Emerging Technology Initiative, Washington, DC, 10 2019.
[42] David White, James D. Dunn, Alexandra C. Schmid, and Richard I. Kemp. Error rates in users of automatic face recognition software, PLoS ONE, October 2015.

Face Recognition Vendor Test (FRVT)

Part 7: Identification for Paperless Travel and Immigration

Patrick Grother
Austin Hom
Mei Ngan
Kayee Hanaoka
Information Access Division
Information Technology Laboratory

This publication is available free of charge from: https:/ /doi.org/10.6028/NIST.IR. 8381

Face Recognition Vendor Test (FRVT) Part 7: Identification for Paperless Travel and Immigration

Patrick Grother
Austin Hom
Mei Ngan
Kayee Hanaoka
Information Access Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR. 8381

July 2021

U.S. Department of Commerce Gina M. Raimondo, Secretary
National Institute of Standards and Technology James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce for Standards and Technology \& Director, National Institute of Standards and Technology

DISCLAIMER

Specific hardware and software products identified in this report were used in order to perform the evaluations described in this document. In no case does identification of any commercial product, trade name, or vendor, imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best available for the purpose.

INSTITUTIONAL REVIEW BOARD

The National Institute of Standards and Technology's Research Protections Office reviewed the protocol for this project and determined it is not human subjects research as defined in Department of Commerce Regulations, 15 CFR 27, also known as the Common Rule for the Protection of Human Subjects (45 CFR 46, Subpart A).

ACKNOWLEDGMENTS

The authors are grateful for the support and collaboration of the U.S. Customs and Border Protection (CBP) component of the Department of Homeland Security.
Additionally we are indebted to staff at DHS' Science \& Technology Directorate (S\&T) and Office of Biometric Identity Management (OBIM) for discussions and image data that supports this work.

RELEASE NOTES

This report will be updated periodically with results for new algorithms, new analyses, and new datasets as they become available.
The report is open for comment - correspondence should be directed to frvt@nist.gov.

Executive Summary

We investigate the use of one-to-many facial recognition in airport transit settings in which travelers' faces are matched against galleries of individuals expected to be present. We primarily consider the case where face recognition serves double-duty for access control (to an aircraft) and facilitation (of recording a visa-holder's departure from a country). This is done in a paperless mode in which a boarding pass (something you have) is replaced with presentation of a biometric (something you are) to a camera, representing an implicit claim to be entitled to board. We describe how such systems can fail, discussing errors during gallery creation, photo capture at boarding, attack detection, and face matching. We discuss how errors might be estimated, citing relevant standards, and their consequences.

We quantify face matching errors by simulating departing flights, populating galleries with an airport ENTRY photo of 420 travelers, then measuring accuracy by running searches of EXIT photos. We repeat this with galleries populated with multiple photos per person, and with galleries as large as 42000, modelling the same concept of operations but at a centralized airport checkpoint. We report that accuracy varies greatly across algorithms, that use of multiple images per person reduces errors considerably, and that error rates when searching 42000-person galleries are often three times higher than in 420-person galleries, but still sometimes below 1%. We consider demographics, and note that for the more accurate algorithms, error rates are so low that accuracy variations across sex and race are insignificant. We include additionally a discussion of how our accuracy estimates might differ from those measured operationally due to by factors that we could not control, such as camera type and imaging environment.

Technical Summary

Background: One-to-many biometric search systems are discussed in their role of positive and negative identification - the former refers to the expectation that person in a probe sample is present in the database (as in access to an office) while the latter presumes the person is not (as in compulsive gamblers entering a casino). The distinction is useful because the applications differ in their tolerance for false negatives and false positives. This report addresses the positive use of one-to-many facial recognition in airport transit settings in which travelers' faces are matched against galleries of individuals expected to be present. We primarily consider the case where face recognition serves doubleduty for access control (to an aircraft) and facilitation (of recording a visa-holder's exit).

In late 2018 the United States commenced a pilot of face-based confirmation of departure system in which passengers boarding an aircraft make cooperative presentations to a camera and the captured photos are immediately searched against a gallery comprised of photos of persons expected on the flight. This process is intended to biometrically bind the traveler to the departure. A positive biometric match in used two ways: First, by the airline, to grant access to the aircraft in lieu of a boarding-pass presentation; second, by passport control authorities to record the departure from the United States of in-scope passengers (e. g. visa holders), notionally replacing the long-standing airline manifest-based biographic process.

Overview: This report summarizes three NIST activities: First, to describe the biometric aspects of the traveler departure application and factors that are expected to affect its performance; second, to document results from running offline simulations in which recent accurate face recognition algorithms are applied to actual ENTRY and EXIT images with the goals of establishing a methodology, estimating accuracy, and exposing some factors that will affect those estimates; third to consider the use of face recognition at other airport touchpoints where higher populations are expected.

EXIT simulations: We simulate traveler EXIT by preparing 567 galleries each containing exactly 420 individuals representing the population expected on a flight. The individuals are not selected by age or sex. They are selected to have the same region of travel document (for example, South America or East Asia). We search each gallery with a fixed set of actual 132931 EXIT photos using recent commercial one-to-many face recognition search engines. Notably we do not have camera, location and timestamp metadata so we cannot "replay" biometric boarding of actual flights. We

PCA $=$ PASSPORT CONTROL AGENCY	FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$	FALSE NEG. ID RATE	$\mathrm{N}=$ NUM. ENROLLED SUBJECTS
TVS $=$ TRAVELER VERIFICATION SERVICE	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	FALSE POS. ID RATE	$\mathrm{T}=$ THRESHOLD

include this and other caveats in section 5.
Algorithms: Our EXIT simulations make use of one-to-many search algorithms submitted to NIST's ongoing Face Recognition Vendor Test between mid 2018 and April 2021. These algorithms are prototypes from the R\&D laboratories of commercial developers of face recognition. These include two variants from the incumbent provider to the face matching facility used in the U.S., including the NEC-3 algorithm that was broadly the most accurate algorithm evaluated in 2018 as reported in NIST Interagency Report 8271 [1].

Images: This report makes use of images provided by DHS Office of Biometric Identity Management in May 2019. That collection is comprised of images and limited metadata indicating in which operation the data was collected e.g. airport-entry, pedestrian land entry, or exit. Some images were accompanied by metadata including date of capture, year of birth, sex, and country-of-birth ${ }^{1}$. From that database, this report uses 132931 EXIT images of 128384 individuals to search 567 air-ENTRY galleries each represented a departing flight ${ }^{2}$. Those galleries hold images drawn from the 825976 airport ENTRY images of the 122387 EXIT individuals who have a prior ENTRY image. The EXIT images were collected in 2018 and the first four months of 2019.

Other content: Section 1 discusses more general error sources and metrics relevant to EXIT and departure, putting matching results into the broader context of aircraft boarding. Section 2 guides readers toward different testing methodologies appropriate to answering a broader range of questions. Section 3 details our simulations and results. Section 4 considers use of one-to-many traveler verification systems (TVS) with a much larger population of $\mathrm{N}=42000$ enrollees for use at other airport touchpoints. Importantly, section 5 discusses various reasons that would render the accuracy estimates in this report too high or too low.
Biometric results: We show that as many as 428 of 567 simulated flights each carrying 420 passengers can be boarded using one-to-many face recognition without any false negative errors - see Table 1 column 5 . Stated in terms of error rates, this corresponds to at least 99.5% of travelers being able to board with a single presentation to a camera. This is attainable by enrolling a single prior ENTRY image in the galleries and using any of seven 2020-2021 face recognition algorithms - see Table 2 column 5.

For many travelers, multiple prior images can be enrolled in a gallery. Here, if we enroll an average of six prior airENTRY images, then the most accurate algorithm will now board 545 of 567 flights without any errors - see Table 1 column 4. Large gains are realized by all algorithms: Now at least 18 developers' algorithms are effective at boarding greater than 99.5% of travelers - see Table 2 column 3.
In 2007, U.S. legislation ${ }^{3}$ specified that 97% of travelers' exits should be verified. That requirement can be met with almost all of the algorithms tested here ${ }^{4}$. Note that there are various systematic reasons why such accuracy may not be achieved in practice - see section 5 .

In test of late 2018 algorithms [1], the most accurate algorithms on large population mugshot searches were NEC-2 and NEC-3. They remain in the top five on that benchmark today. However, when matching lower quality EXIT to ENTRY images the algorithms are less accurate than a 2018 Microsoft algorithm and many other more recent algorithms. By taking 100 minus the miss percentages in Table 2, NEC-3 correctly identifies 98.7% of individuals enrolled with a single image and 99.0% of those enrolled with images from multiple prior encounters. For the most accurate algorithm, Visionlabs-10, these values are 99.9% and 100% respectively, corresponding to about a factor of 10 fewer errors than NEC-3. Note that NEC-3 is now more than two years old and we may assume NEC has since improved its capability.

[^20]| PCA $=$ PASSPORT CONTROL AGENCY | FNIR $(N, R, T)=$ | FALSE NEG. ID RATE | $\mathrm{N}=$ NUM. ENROLLED SUBJECTS |
| :--- | :---: | :---: | :--- |
| TVS $=$ TRAVELER VERIFICATION SERVICE | $\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$ | FALSE POS. ID RATE | $\mathrm{T}=$ THRESHOLD |

			Num zero false negative simulations		
ALGORITHM			$N=420$	$N=420$	$N=42000$
\#	NAME	DATE	$k \geq 1$	$k=1$	$k=1$
1	VISIONLABS-010	2021-02-05	${ }^{1} 545$	${ }^{1} 428$	${ }^{3} 177$
2	IDEMIA-008	2021-03-15	${ }^{2} 536$	${ }^{2} 422$	${ }^{2} 215$
3	VISIONLABS-009	2020-08-04	${ }^{3} 533$	${ }^{3} 406$	${ }^{5} 125$
4	CLOUDWALK-HR-000	2021-02-10	${ }^{4} 528$	${ }^{4} 393$	${ }^{1} 265$
5	DEEPGLINT-001	2020-07-23	${ }^{5} 519$	${ }^{5} 336$	${ }^{4} 153$
6	CANON-CIB-000	2020-10-19	${ }^{6} 518$	${ }^{7} 307$	${ }^{13} 19$
7	XFORWARDAI-001	2021-01-21	${ }^{7} 513$	${ }^{6} 309$	${ }^{7} 113$
8	PARAVISION-007	2021-02-01	${ }^{8} 490$	${ }^{8} 237$	${ }^{6} 124$
9	TRUEFACE-000	2021-01-27	${ }^{9} 476$	${ }^{15} 154$	${ }^{15} 4$
10	NEUROTECHNOLOGY-008	2021-03-26	${ }^{10} 470$	${ }^{12} 169$	${ }^{17} 2$
11	COGENT-004	2021-02-10	${ }^{11} 454$	${ }^{11} 182$	${ }^{14} 10$
12	PARAVISION-005	2019-12-11	${ }^{12} 453$	${ }^{13} 156$	${ }^{10} 72$
13	NTECHLAB-008	2020-01-06	${ }^{13} 451$	${ }^{17} 125$	${ }^{20} 1$
14	PIXELALL-004	2020-07-02	${ }^{14} 435$	${ }^{16} 146$	${ }^{23} 0$
15	TECH5-002	2021-04-07	${ }^{15} 416$	${ }^{18} 110$	${ }^{18} 2$
16	DERMALOG-008	2021-01-25	${ }^{16} 382$	${ }^{20} 71$	${ }^{27} 0$
17	IDEMIA-007	2020-01-17	${ }^{17} 374$	${ }^{21} 66$	${ }^{21} 0$
18	MICROSOFT-006	2018-10-29	${ }^{18} 361$	${ }^{14} 155$	${ }^{16} 3$
19	SENSETIME-005	2020-12-17	${ }^{19} 319$	${ }^{9} 233$	${ }^{8} 99$
20	SENSETIME-004	2020-08-10	${ }^{20} 316$	${ }^{10} 208$	${ }^{9} 96$
21	RANKONE-010	2020-11-05	${ }^{21} 300$	${ }^{19} 76$	${ }^{22} 0$
22	RANKONE-009	2020-06-26	${ }^{22} 203$	${ }^{24} 38$	${ }^{19} 1$
23	COGNITEC-004	2021-03-08	${ }^{23} 201$	${ }^{26} 11$	${ }^{28} 0$
24	NEC-003	2018-10-30	${ }^{24} 111$	${ }^{22} 66$	${ }^{12} 30$
25	NEC-002	2018-10-30	${ }^{25} 111$	${ }^{23} 65$	${ }^{11} 32$
26	NEUROTECHNOLOGY-007	2019-10-03	${ }^{26} 90$	${ }^{25} 21$	${ }^{25} 0$
27	DERMALOG-007	2020-02-12	${ }^{27} 30$	${ }^{27} 3$	
28	IDEMIA-004	2018-06-30	${ }^{28} 3$	${ }^{29} 0$	${ }^{24} 0$
29	NEC-000	2018-06-21	${ }^{29} 0$	${ }^{28} 0$	${ }^{26} 0$

Table 1: Number of simulations (out of 567) completed without errors. The second row N values give the number of individuals enrolled in each gallery. The 420 person galleries represent aircraft boarding; the 42000 case represents a airport security line where many more people are expected. The third row k values give the number of images of each enrollee in each gallery.
The second and third columns identify the algorithm and the date it was submitted to NIST. The remaining columns give the number of simulations, out of 567, for which all 420 travelers boarded the flight (cols. 4, 5), or passed the checkpoint (column 6), without experiencing a false negative. Higher values are better, and the table is sorted on the first results column. The threshold is set so that only a fraction, 0.0003, of non-mated searches would return any match. The shaded cells indicate the three most accurate algorithms for that trial.

Our demonstration of considerably higher accuracy from newer algorithms is an existence proof that EXIT accuracy on operational images can be improved. Given the pace of developments associated with the industrial migration to various convolutional neural networks, it is incumbent on end-users to establish contractual provisions for technology refreshment, factoring in such quantities as speed, scalability, stability, and cost.

The accuracy values noted above correspond to correct identification of an individual - here "correct" requires the algorithm to report the correct identity with a score above a set threshold. The threshold is set to limit false positives this is necessary to prevent illicit boarding of an aircraft in an access-control context, and to limit visa-holder's status indicator mistakes in an EXIT facilitation context. The false positive identification rate (FPIR) in this report is usually set to 1 in 3333, i.e. the proportion of searches of people not entitled to board an aircraft who succeed in doing so. A false positive occurs when a photo from such a traveler matches any (random) gallery photo. The consequences of such events, and a more detailed discussion of security, appears in section 1.5. We also include figures showing the tradeoff of false negative and positive identification rates, noting that some algorithms can afford lower FPIR without greatly degrading accuracy. An FPIR of 1 in 3333 would imply that a mismatch would occur once during the boarding of about eight flights $(3333 / 420)$ - whether that is too frequent or to scarce is essentially policy issue informed by the error tradeoff characteristics of section 3.2.3 and the demographic dependencies given in sections 3.2.4 and 3.2.5.

Discussion: The report documents accuracy or small-gallery identification simulations showing a strong algorithm effect - accuracy is much improved with some algorithms versus others. This dominates two other main effects - first

			PERCENT TRAVELERS NOT MATCHED		
ALGORITHM			$N=420$	$N=420$	$N=42000$
\#	NAME	DATE	$k \geq 1$	$k=1$	$k=1$
1	VISIONLABS-010	2021-02-05	${ }^{1} 0.02$	${ }^{1} 0.13$	${ }^{3} 0.61$
2	IDEMIA-008	2021-03-15	${ }^{2} 0.02$	${ }^{2} 0.15$	${ }^{2} 0.49$
3	VISIONLABS-009	2020-08-04	${ }^{3} 0.03$	${ }^{3} 0.16$	${ }^{5} 0.74$
4	CLOUDWALK-HR-000	2021-02-10	${ }^{4} 0.03$	${ }^{4} 0.18$	${ }^{1} 0.43$
5	DEEPGLINT-001	2020-07-23	${ }^{5} 0.04$	${ }^{5} 0.24$	${ }^{6} 0.80$
6	CANON-CIB-000	2020-10-19	${ }^{6} 0.04$	${ }^{7} 0.30$	${ }^{13} 1.79$
7	XFORWARDAI-001	2021-01-21	${ }^{7} 0.05$	${ }^{6} 0.28$	${ }^{7} 0.81$
8	PARAVISION-007	2021-02-01	${ }^{8} 0.07$	${ }^{8} 0.41$	${ }^{4} 0.72$
9	TRUEFACE-000	2021-01-27	${ }^{9} 0.08$	${ }^{14} 0.66$	${ }^{16} 3.72$
10	NEUROTECHNOLOGY-008	2021-03-26	${ }^{10} 0.08$	${ }^{11} 0.59$	${ }^{18} 4.12$
11	PARAVISION-005	2019-12-11	${ }^{11} 0.10$	${ }^{13} 0.62$	${ }^{10} 1.04$
12	NTECHLAB-008	2020-01-06	${ }^{12} 0.11$	${ }^{17} 0.81$	${ }^{19} 4.52$
13	COGENT-004	2021-02-10	${ }^{13} 0.11$	${ }^{12} 0.59$	${ }^{14} 2.34$
14	PIXELALL-004	2020-07-02	${ }^{14} 0.12$	${ }^{15} 0.69$	${ }^{17} 3.88$
15	TECH5-002	2021-04-07	${ }^{15} 0.14$	${ }^{18} 0.86$	${ }^{21} 5.21$
16	DERMALOG-008	2021-01-25	${ }^{16} 0.19$	${ }^{19} 1.04$	${ }^{23} 6.39$
17	IDEMIA-007	2020-01-17	${ }^{17} 0.19$	${ }^{21} 1.12$	${ }^{20} 5.19$
18	MICROSOFT-006	2018-10-29	${ }^{18} 0.23$	${ }^{16} 0.71$	${ }^{15} 3.21$
19	SENSETIME-005	2020-12-17	${ }^{19} 0.28$	${ }^{9} 0.45$	${ }^{8} 0.85$
20	SENSETIME-004	2020-08-10	${ }^{20} 0.29$	${ }^{10} 0.50$	${ }^{9} 0.89$
21	RANKONE-010	2020-11-05	${ }^{21} 0.31$	${ }^{20} 1.06$	${ }^{22} 5.71$
22	COGNITEC-004	2021-03-08	${ }^{22} 0.49$	${ }^{26} 2.18$	${ }^{25} 9.20$
23	RANKONE-009	2020-06-26	${ }^{23} 0.52$	${ }^{24} 1.52$	${ }^{24} 7.85$
24	NEC-002	2018-10-30	${ }^{24} 0.99$	${ }^{22} 1.29$	${ }^{11} 1.61$
25	NEC-003	2018-10-30	${ }^{25} 0.99$	${ }^{23} 1.29$	${ }^{12} 1.78$
26	NEUROTECHNOLOGY-007	2019-10-03	${ }^{26} 1.02$	${ }^{25} 2.02$	${ }^{27} 31.93$
27	DERMALOG-007	2020-02-12	${ }^{27} 1.97$	${ }^{27} 3.66$	
28	IDEMIA-004	2018-06-30	${ }^{28} 4.96$	${ }^{28} 8.13$	${ }^{26} 17.81$
29	NEC-000	2018-06-21	${ }^{29} 15.41$	${ }^{29} 18.85$	${ }^{28} 91.97$

Table 2: False negative rates by gallery size and number of enrolled images per person. The second row N values give the number of individuals enrolled in each gallery. The 420 person galleries represent aircraft boarding; the 42000 case represents a airport security line where many more people are expected. The third row k values give the number of images of each enrollee in each gallery.
The second and third columns identify the algorithm and the date it was submitted to NIST. The remaining columns give false negative identification "miss" rates i.e. the proportion of travelers not matched to their gallery photo(s), expressed as a percentage. Lower values are better, and the table is sorted on the first results column. The superscripts give the rank of the algorithm for that column. The threshold is set so that only a fraction, 0.0003, of non-mated searches would return any match. The shaded cells indicate the three most accurate algorithms for that trial.
that more prior enrollment images for each enrollee improves accuracy and, second, that even a 100-fold population size increase degrades accuracy only modestly.
The report gives some information on demographic dependencies. Many algorithms give somewhat higher false negative rates on women compared to men. This is not true for, or has reduced magnitude, for the more accurate algorithms. With high accuracy, and with opportunities in real operations to make second identification attempts, these differentials are either small or can be remediated. The report also notes demographic dependence on false positive rates, particularly that women and people of certain nationalities, often East Asia, tend to give higher false positive identification rates. Again some algorithms are considerably superior to others in this respect. Note that security context matters: In particular that passive non-mate, and active attack, presentations will be very small percentages of all attempts.

The accuracy estimates in this report are just that, estimates. Section 5 notes several factors that would drive accuracy higher or lower. Primary among those is that we can't be sure how well the images we possess represent the actual paired ENTRY galleries and their EXIT photos. A passport control authority has two complementary options for improving on our estimates: First is to run exhaustive clipboard style operational tests; second is to provide NIST or some other laboratory with a) actual images, and b) the operational algorithm. This latter option had been planned in 2019 but was derailed for several reasons, including the COVID pandemic.

1 Errors and Their Consequences in Biometric Exit

The following subsection describe mechanisms by which an EXIT system, as comprised, makes errors. We distinguish biometric errors (from cameras and algorithms) from operational issues deriving from business processes.

1.1 Failure to Enroll

Nature: In the context of TVS' manifest-driven gallery construction, some individuals who are legitimately booked on an aircraft will not be enrolled in the face recognition gallery. This number will usually be zero but could be non-zero for several reasons, among them:

1. Absence of historical photo. For various policy-related issues a PCA may not have a prior photo - these could include first-time visitors, foreign passport holders born in the country, and bilateral trade-related visa exemptions. In such cases a PCA might legitimately have no ENTRY record. This circumstance might be termed an operational failure to enroll.

Measurement: A PCA can estimate the prevalence of missing enrollments by cross-referencing airline manifests and the lack of prior reference photos. This estimate will include instances of 2 below.

Consequences: Failures to enroll will manifest as false negatives (see section 1.4 below). Airline staff can resolve by biographic and human visual biometric inspection.
2. Biographic errors. It is possible that the manifest provided to the PCA by the air carriers includes biographic errors from well understood sources such as recent marriage and change of name, and typographical errors.

Measurement: A PCA can estimate the prevalence of missing enrollments by cross-referencing airline manifests and the lack of prior reference photos. This estimate will include instances of 1 above.
Consequences: Failures to enroll will manifest as false negatives (see section 1.4 below). Airline staff can resolve by biographic and human visual biometric inspection.
3. Poor image quality. It is possible the photographs that a PCA has on an individual are of poor enough quality that the TVS feature extraction software fails to produce a template from the photograph. This could occur because the face detector fails to find the face, or because the software deems the photo to be of low utility to their downstream recognition engine so, electively, does not produce a template. Such outcomes would constitute biometric failures to enroll.

Measurement: A PCA can estimate algorithm enrollment failures by direct analysis of TVS logs.
Consequences: Failures to enroll will manifest as false negatives (see section 1.4 below). Airline staff can resolve by biographic and human visual biometric inspection.

1.2 Failure to Capture

Nature: During aircraft boarding TVS never receives photos of some travelers for at least two reasons:

1. Camera failure: Some cameras might fail to trigger and take a photograph. This can occur due to failed face detection (e.g. due to sunglasses, or subject not being in the field-of-view), or because an on-board quality algorithm deemed the captured photograph of insufficient utility, or due to some system fault of the kind remedied
by rebooting the system. During observations at various airports in June 2019, some cameras would not trigger; others would trigger only after the subject disengaged by moving away, and then re-engaged.
Measurement: We can put an upper bound on the frequency of such events by subtracting the number of people verified from the number of people on the manifest. This quantity will include outright recognition failures too. This estimate will include people who never appeared before the camera (e.g. because the airline allowed traditional paper-based boarding).
2. Airline operations: An operational source of "failure to capture" can be that airline staff might redirect the traveler to some human-adjudicated boarding process such as the traditional passport or boarding-pass based biographic confirmation. This could occur a) because the staff perceive the traveler has had difficulty, or b) that they will have difficulty (e.g. because they're too tall or short), or c) simply because the airline staff are trying to expedite boarding by using the biometric process and the biographic process.

Measurement: Such events can only be documented by observation, most readily human observation, but also via some automated supervisor or logging system.

Consequences: For an in-scope traveler the consequence will be that EXIT will only be recorded biographically according to the information used in forming the passenger manifest - this is essentially the legacy biographic process. An immediate operational consequence is that the passenger will have to be processed manually (by airline) staff. Downstream, this may cause the PCA to perform overstay inquiries.

1.3 Failure to Extract Features

Nature: It is possible the photographs that the PCA has on an individual are of poor enough quality that the TVS feature extraction software fails to produce a template from the photograph. This can occur during gallery construction or during EXIT operations.

Measurement: Such events can be measured from algorithm logs such as those produced in FRVT, and likely by operational systems.

Consequences: If TVS fails to extract features during EXIT, the traveler's boarding attempt will be rejected, possibly silently. He or she may make a second attempt, perhaps after being prompted. In June 2019 observation of boarding, the author noticed airline staff directing passengers to the gate-agent biographic process. This would likely lead to the PCA having to revert to its reliance on biographic recording of EXIT.

1.4 False Negative During Identification

Nature: In a positive identification application like EXIT, the one-to-many search algorithm generally grants access if the rank-one (i.e. highest-scoring) candidate has a score above threshold. The identity of the person in the live photo is taken to be that returned by the system even if it is incorrect. From a testing perspective, an error occurs if the rank-1 candidate is of the wrong identity or has score below threshold. This gives us the following performance metric, the false negative identification rate (FNIR):

$$
\begin{equation*}
\operatorname{FNIR}(N, T)=\frac{\text { Num. searches where top-scoring candidate has wrong ID or score below threshold }}{\text { Number of searches conducted }} \tag{1}
\end{equation*}
$$

This definition automatically incorporates "failure to extract" feature events as they won't return high-scoring candidates. The dependence on gallery size, N , and threshold, T , are present as they are design choices affecting FNIR. For

PCA $=$ PASSPORT CONTROL AGENCY	FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$	FALSE NEG. ID RATE	$\mathrm{N}=$ NUM. ENROLLED SUBJECTS
TVS $=$ TRAVELER VERIFICATION SERVICE	$\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$	FALSE POS. ID RATE	$\mathrm{T}=$ THRESHOLD

an audience who likes to think in terms of accuracy or "hit rates", we can convert the "miss rate" or Eq. 1 to True Positive Identification Rate using TPIR $=1$ - FNIR, so a 3% FNIR becomes 97% TPIR. However, that definition is naïve in that it assumes every traveler was photographed. It ignores instances of failure-to-capture, and also cases where travelers are photographed, not matched, and then make further attempts. Then an operational definition of false negative identification rate is

$$
\begin{equation*}
\operatorname{FNIR}(N, T)=\frac{\text { Num. travelers who are not matched to the correct ID in one or more presentations to the camera }}{\text { Number of travelers }} \tag{2}
\end{equation*}
$$

The two measures would be equivalent if each traveler executes just once search. To the extent that is true, our Equation 1 estimates in this report will approximate Equation 2. We use the 1 thoughout this report. We discuss in section 5, factors that can make our estimates too high or too low.

Measurement: In this report, we don't have insight into the transactional nature of aircraft boarding, with failed captures or failed searches. Instead all we see are images that can be used in simulations of boarding. For measuring duration of boarding, and quantities such as the number of travelers who need to make further presentations, an operational observational test is most appropriate. Many aspects may be measurable in scenario tests in which passengers and airline staff model the actual target boarding process.
Consequences: False negatives will usually be resolved by biographic and human visual biometric inspection by airline staff. For an in-scope traveler the consequence will be that EXIT will only be recorded biographically according to the information used in forming the passenger manifest - this is essentially the legacy biographic process. Downstream, this may cause the PCA to perform overstay inquiries. The PCA would possess an aircraft boarding photo, but one that is not bound to an identity - such images are provided to PCA staff monitoring a flight departure.

1.5 False Positive During Identification

Nature: False positives occur when images of two people are erroneously associated. In biometric EXIT there are three kinds of false positive:

- First is the in-gallery false positive in which a legitimately enrolled traveler matches the wrong identity. Such a possibility necessarily implies that the correct identity would be displaced from the rank- 1 position on the candidate list, usually to rank 2. That list is a data structure internal to the particular TVS and is not typically presented to airline staff or anyone else. Depending on how the system is built, an in-gallery false positive may result in a false negative for the correct passenger if he or she boards later in the process. Such errors were observed by the author in June 2019 during visits to observe the boarding process in five different airports.

Measurement: The in-gallery false positive rate is not currently defined in performance testing standards as it is approximately the proportion of mated searches yielding the mate at rank 2 or higher. Such an outcome would most often occur because the search imagery is of poor quality, but could occur if the enrolled imagery was poor. Formal measurement can be achieved by careful online observation of the boarding process. Error rates can be estimated approximately from recognition logs by counting instances of a passenger apparently boarding the plane twice - once legitimately as themselves and secondly when another traveler incorrectly matched their identity.

Consequence: Such errors will likely be resolved by airline staff, who may become familiar with such an event.

- Second is the incorrect acceptance of people who are not in the gallery and not expected on the departing flight.

This population includes travelers who mistakenly arrive at the wrong gate ${ }^{5}$ without subversive intent. The frequency of occurrence is usually stated by the False Positive Identification Rate (FPIR). FPIR is the primary security-related parameter in a one-to-many access control system. Its value is chosen by a system owner to target security objectives and is implemented by setting the system threshold according to some calibration ${ }^{6}$.
Measurement: Such errors were observed by the author in June 2019 when airline staff in the gate area were accidentally captured by the camera and incorrectly matched to an actual passenger. While this kind of error could be measured by making in-person attempts, this approach does not scale. An offline approach in which images are matched after-the-fact affords more precise FPIR estimates - this report takes just this approach.

Consequence: The consequence for the airline is potentially a stowaway. However, airlines usually count passenger totals and may thereby be able to detect such events. While there is little consequence for the PCA's EXIT processing, these events, if undetected, could cause erroneous updates to the PCA's systems, undermining integrity.

- Third is a false positive from someone who is illicitly trying to gain access. This category would include stowaways and potentially visa overstayers.

Passive vs. active attack

False match rates usually express the likelihood that a face recognition algorithm will compare two photographs and return a high score from two individuals who are selected entirely randomly, or perhaps with the restriction that they have the same demographics such as age, sex, and race.
However, if someone makes more deliberate efforts to impersonate an identity e.g. via cosmetics or wearing a face mask, then additional algorithms must be employed to detect the presentation attack (PA). To succeed an attacker must defeat the PAD subsystem, if installed and enabled, AND match the intended identity - see section 1.6

- Casual attack: If someone is making a low-effort attack - for example as a stowaway - they might rely on matching any identity essentially fortuitously, and then hoping the airline staff does not notice nor take steps to resolve the match. A second intent here would be to fake someone's departure from a country. This possibility - to overstay a visa by sending a confederate to verify a particular identity - is notable in that it would be difficult for an overstayer to select a confederate who would match the particular identity in a biometric search - In this respect a one-to-many system where there is no claim to an identity is more secure to passive attack. However, the security context is that such a system is prone to circumvention attack: a confederate failing to match an enrolled identity might appeal to airline staff who would make biographic or visual biometric efforts to verify the person, with the likely outcome that passenger would be allowed to board.
- Active attack: An overstay attempt would be much more successful if the confederate actively impersonates the visa-holder. This could be achieved using a presentation attack instrument such as a face mask.
Measurement: Vulnerability to active attack could be demonstrated via "red-team" presentations to the operational system. More formal quantification of the vulnerabilities is best conducted in laboratory trials using identical equipment to that used in the operation. Each approach will require controlled, defined and

[^21]| PCA $=$ PASSPORT CONTROL AGENCY | FNIR $(N, R, T)=$ | FALSE NEG. ID RATE | $\mathrm{N}=$ NUM. ENROLLED SUBJECTS |
| :--- | :---: | :---: | :--- |
| TVS $=$ TRAVELER VERIFICATION SERVICE | $\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$ | FALSE POS. ID RATE | $\mathrm{T}=$ THRESHOLD |

repeatable production of presentation artefacts (masks, cosmetics etc.). The metrics relevant to this kind of attack are standardized - see section 2.2.

- Comparison with existing paper-based boarding: Attacks on non-biometric paper-based departure systems are possible also: A stowaway could find, or steal, a boarding pass. A confederate seeking to depart for a visa-overstayer would only have to present a boarding pass and possibly a cursory inspection by the airline staff of the passport. In these cases, a biometric system, if used and not circumvented, will improve security compared over the legacy process.
- Consequences: For an IA, a successful impersonation attack would likely produce an undetected overstay. The attack assumes the confederate either does not need or want to return to the United States or could do so using other documents. There are no consequences for the airline.

1.6 Presentation Attack Detection Metrics

The ISO/IEC 30107-3 standard establishes the metric Impostor Attack Presentation Match rate (IAPMR) which expresses the proportion of attackers who both defeat the PA detection software AND match the correct identity. That metric is appropriate to access, say, to a mobile phone. In one-to-many processing such as paper-less EXIT, a traveler would have to defeat the PAD and match the specific intended enrollment.

1.7 Demographic Differentials

Biometrics generally give different error rates for different populations. For example, fingerprints are known to give higher false negative rates in the very young and the elderly ${ }^{7}$. NIST Interagency Report 8280 [2] documented error rate differentials for face recognition examining the effect of sex, age and race on accuracy of many commercial algorithms. That report made an important distinction between differentials in false negative and false positive error rates, the former affecting how well a single individual is not matched as him or herself, the latter affecting how often two individuals are erroneously associated. The consequences of such errors, and differentials in their rate of occurrence, are very different. We include visualizations of false negative differentials in section 3.2.1 and false positives demographic differentials in sections 3.2.4 and 3.2.5.

[^22]
2 Operational Questions

2.1 Context

This report gives extensive documentation of biometric identification performance. However larger questions exist, and core biometric performance statements only inform answers to those questions. For example,

- An airline might ask "which camera and boarding solution should we procure?" - this report is silent on that because we would at least need to know what cameras were used for collecting the data, and this is not information we have. Dedicated laboratory tests of camera equipment ${ }^{8}$ are appropriate to such tests.
- An airline might ask "what is the proportion of passengers being referred to gate agents" - such a quantity could be approximately estimated from TVS logs, but is more precisely answered only by observation of the operational system.
- A security analyst might ask "what is the chance on an active impersonation attack succeeding" - this question can be addressed potentially by laboratory trials if the fielded system can be copied and if access access to the TVS recognition engine is granted. It may be easier to conduct operational "red team" trials with an appropriately motivated staff. Active attacks (e.g. using face masks) are not the fault of the recognition algorithm per-se, but are enabled by lack of (or use of poor) presentation attack detection algorithms ${ }^{9}$.
- A policy maker might ask "is biometrics better than biographic matching for overstay detection?" - we can't address that without biographic data and extant biographic matching algorithms.

2.2 Standardized Tests

Since 2003, there have been significant worldwide investments in supporting development of biometrics performance testing and reporting standards in the ISO/IEC JTC 1 Subcommittee 37. That body develops very well vetted consensus standards in working groups (WGs) dedicated to vocabulary (WG1), interfaces (WG2), data interchange and image quality (WG3), application aspects including face-aware capture devices (WG4), performance testing and reporting (WG5) and societal issues (WG6). Table 3 lists standards that may be valuable in the measurement of performance in a PCA's ENTRY-EXIT processes.
There are a number of other testing standards supporting other domains of use.

[^23]	PCA $=$ PASSPORT CONTROL AGENCY	FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$	FALSE NEG. ID RATE	$\mathrm{N}=\mathrm{NUM}$. ENROLLED SUBJECTS	$\mathrm{T}=0 \rightarrow$ Investigation
TVS $=$ TRAVELER VERIFICATION SERVICE	FPIR $(\mathrm{N}, \mathrm{T})=$	FALSE POS. ID RATE	$\mathrm{T}=$ THRESHOLD	$\mathrm{T}>0 \rightarrow$ Identification	

Table 3: Testing standards supporting performance measurement in ENTRY-EXIT

Number	Title	Relevance
ISO/IEC 19795-1	Principles and Framework	This foundational document establishes requirements on all biometric tests regarding design of tests of enrollment, verification and identifica- tion, and how to put uncertainty estimates on measured error rates.
ISO/IEC 19795-2	Technology and Scenario Test- ing	Regulates two kinds of "in-vitro" test: "Technology" tests which are most often offline sample comparison and search tests such as those doc- umented herein, and "scenario tests" that are usually human-in-the-loop laboratory tests intended to mimic operational systems.
ISO/IEC 19795-3	Environmental Aspects	A technical report guiding testing and reporting in the presence of envi- ronmental variations such as humidity and illumination
ISO/IEC 19794-4	Interoperability Testing	Relevant to tests where components of a system, possibly from different manufacturers must produce and consume standardized data, for ex- ample cameras must produce images that will be consumed by remote recognition algorithms.
ISO/IEC 19795-6	Operational Testing	Establishes requirements on "in-situ" tests, where identity ground truth is not necessarily known, and where the act of measuring accuracy or duration can potentially disturb the estimates. This kind of test is ad- vantaged by considering the actual system on its native population in its native environment. These aspects are often material and difficult to approximate in lab tests.
ISO/IEC 30107-3	Presentation Attack Detection	This standard regulates tests of PAD components and PAD-enabled sys- tems and gives detailed guidance on measuring and naming of error rates that are available for various levels of logging and instrumentation.
ISO/IEC 19795-10	Demographic dependence	This standard (2020-11) is in the early stages of development. It will establish requirements on various kinds of tests intended to measure de- mographic differentials in biometric devices, algorithm and systems.

Figure 1: Image (a) is representative of passport-like data that would ordinarily be available to a PCA's TVS from all in-scope travelers and citizens. However, such images were not available for the trials conducted here. The remaining images have size 240×240 pixels and are representative of some poorer quality ENTRY images: Image (b) is typical of ENTRY photos in that it has has non-frontal pose, and strong background illumination reducing contrast on the subject's face. Image (c) is typical of EXIT photos in that it exhibits some close-range distortion, mild non-frontal pose arising from "don't wait for frontal presentation" fast-capture and adverse background lighting. contrast.

3 Simulation and Results

3.1 Air-Exit Simulations

We simulate biometric EXIT by running simulations using archived images as follows.

1. We form a departing flight by placing ENTRY images from $N=420$ individuals into a gallery. We use 420 because that number is reasonable for a large commercial twin-aisle jet such as the Boeing 777 or the Airbus A380 ${ }^{10}$. The exact gallery size is not that important because accuracy is an insensitive function of N . We later increase the population size to 42000 to simulate an airport security checkpoint, for example.
2. We populate an EXIT gallery in two ways.
(a) First, with one ENTRY image per person.
(b) Second with a multiple such images, the average is about 6, with some variance per individual.

While it is common practice to populate the gallery with images from all prior encounters of a person ${ }^{11}$, we include the one-image case to show "worst-case" accuracy i.e. that expected when only one prior encounter is available. We include results for single- and multiple-image enrollment in sections 3.2.1 and 3.2.2 respectively ${ }^{12}$.
3. We populate a gallery with individuals from the same region of the world. We do this for two reasons: As discussed in section 5, we list various factors that will push our error rate estimates up, and down. that flights departing the U.S. tend to have some racial homogeneity - flights departing for Japan have more individuals from East Asian countries than do flights departing to Nigeria, and more than would be expected by random selection. Another reason is that face recognition accuracy will be worse for homogenous galleries because false positives will be more common. Our practice of building homogenous galleries biases the test toward higher error.
4. The 12 regions are: Europe, W. Africa, E. Africa, N. Africa, Middle East, S. Asia, E. Asia, Oceania, N. America, C. America, Caribbean and S. America. We assign individuals to a region based on the issuers of their travel document. Occasionally some travelers will travel on a different country's travel document; in such cases we assume their region to be that of the gallery ENTRY image.
5. We form 567 galleries, with one image per person. We form another set of 567 galleries with variable numbers of images per person. The number of galleries we can form per region varies because we have more images from some regions than others.
6. We search each gallery using a single probe-set containing 127258 EXIT images of 123075 people. By visual inspection it is evident that the images are collected using different cameras in different locations. For a given gallery only small proportion of the searches will have an enrolled mate in the departure gallery, at most 420 of 123075 people. These mated pairs afford estimates of false negative identification rate. The remaining images, from persons of all regions of the world, form a non-mated search set used for estimating false positive identification rates.

[^24]7. We run multiple algorithms, in some cases more than one from each developer. These were submitted to the one-to-many identification track of the FRVT between May 2018 and the present. The list of algorithms includes the NEC-3 algorithm that was broadly the most accurate through November 2018 as reported in NIST Interagency Report 8271 [1], but which has been eclipsed in accuracy by newer algorithms submitted since.
8. We compute 10 thresholds for each algorithm corresponding respectively to the 10 false positive identification error rates: $0.00003,0.0001,0.0003,0.001,0.003,0.01,0.03,0.1,0.3,1$. We get the threshold value by looking at the highest non-mate score produced when running all non-mate searches against all galleries. Given, say, 126838 non-mate searches into each of 567 galleries, the threshold for FPIR $=0.0003$ is taken to be the $126838 \times 567 \times$ $0.0003=21575$-th highest observed rank-one comparison score.

3.2 Results

3.2.1 Attainable accuracy with single entry image

Figure 2 shows accuracy for two algorithms submitted to NIST 28 months apart. These are the NEC-3 algorithm submitted to NIST in November 2018, and the Visionlabs-10 algorithm from February 2021. The gallery size is $\mathrm{N}=$ 420 subjects, each person enrolled with exactly one ENTRY image. The vertical axis is a count of the individuals who are not biometrically authenticated during boarding. The horizontal axis shows the region of the enrolled population. The dots correspond of one departing flight. The dots are jittered horizontally around the region label, and vertically around the integer value, to avoid over-plotting and show the distribution.

The notable observations from the graphs are:

1. The number of false negative recognition errors is spread between zero and 16 , with the most common value being 6. These errors would need to be resolved via a second attempt at biometrics, or via an airline-defined biographic process.
2. The distributions across regions are similar. The Central American flights give modestly higher FNIR, but this may simply be the result of chance. To the extent that some of the regions here are proxies for race, the results comport with those published in NIST Interagency Report 8280 [2] showing little dependence of false negative rates on race. Any false negative demographic differentials should be corrected for:
(a) Ageing: It is possible that different travelers from certain regions travel less frequently such that the gallery photos are older - time lapse affects appearance and accuracy.
(b) Age: It is possible that absolute age affects accuracy. For example, although not the subject of the simulation here, flights into Orlando are disproportionately populated with children ${ }^{13}$ whose lower height can affect head pitch angle and accuracy.
3. We report the rate of false negatives (FNIR) in a subsequent figure - but note here that a count of 13 (i.e. 0.03 * 420) corresponds to a 3% failure rate. On that basis, the overall error rate is below 3% corresponding to better than the 97% verification rate required in 2007 legislation.
[^25]| PCA $=$ PASSPORT CONTROL AGENCY | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | FALSE NEG. ID RATE | $\mathrm{N}=$ NUM. ENROLLED SUBJECTS |
| :--- | :---: | :---: | :--- |
| TVS $=$ TRAVELER VERIFICATION SERVICE | $\operatorname{FPIR}(\mathrm{N}, \mathrm{T})=$ | FALSE POS. ID RATE | $\mathrm{T}=$ THRESHOLD |

Figure 2: Count of false negatives on simulated flights by region using the NEC-3 algorithm from Nov. 2018 and the Visionlabs-10 version from February 2021. The gallery is populated with one ENTRY image from each of $N=420$ individuals. The threshold is set to target a false positive identification rate of 0.0003 corresponding to 1 false positive in 3333 impostor search attempts. The false negative identification rate for a flight can be stated by dividing the number of false negatives by the number of passengers, 420 .

Figure 2(b) shows accuracy for a recent algorithm that is among the most accurate submissions to the one-to-many track of FRVT. The number of errors now is much lower, ranging from 0 to 4 , with most common value being 0 . A false negative count of zero corresponds to correct recognition of all passengers.

Note that the most accurate algorithms have been submitted to NIST recently, in early 2021, showing accuracy gains are still being realized by developer innovation. Several algorithms, including the VisionLabs-10 algorithm used in Figure 2(b), are more accurate than leading algorithms submitted to NIST in 2018 - see the ongoing FRVT webpage for names, dates, and more general accuracy results. The implication is that a PCA will realize accuracy gains if its technology refresh process is active and frequent.

Figure 3 shows the same figure for the most accurate algorithms tabulated appearing in Table 2. We note the following:

1. Figure 3 includes, in blue text, values for FNIR, the estimated proportion of passengers who will not be able to board with a single probe capture. The values are well near 0.1% for the most accurate algorithms, and often above 1% for the less accurate ones.

Region flight is departing to

Figure 3: Count of false negatives on simulated flights by region. Each point corresponds to one flight with a gallery populated with one ENTRY image from each of $N=420$ individuals. The threshold is set to target a false positive identification rate of 0.0003 corresponding to 1 false positive in 3333 impostor search attempts. The blue text gives FNIR. The panels are arranged left-to-right, top-to-bottom in order of mean false negative count. The horizontal green line corresponds to the 3% false negative goal implied by legislation in the U.S.

3.2.2 Attainable accuracy with multiple entry images

Figure 4 shows the accuracy results for two algorithms for a gallery of size $\mathrm{N}=420$ subjects each now enrolled with multiple ENTRY images. The algorithms were submitted 29 months apart, in November 2018 (NEC-3) and March 2021 (Idemia-8). From the two figures we note the following:

1. The use of multiple enrollment images reduces the number of false negative recognition errors modestly for NEC3 (2018). It produces around 4 errors on average instead of 6 with a single image. The worst case count is reduced from 16 to 14.
2. With Idemia-8 (2021) the effect of enrolling more images is a more substantial reduction in false negative outcomes such that a large majority of flights will see all passengers board without any errors. The worst case count of error is reduced from 4 to 2 .

Figure 4: Count of false negatives on simulated flights by region using the November 2018 NEC-3 and March 2019 Idemia-8 algorithms. Each point corresponds to one flight the gallery for which is populated with multiple ENTRY image from each of $N=$ 420 individuals. The threshold is set to target a false positive identification rate of 0.0003 corresponding to 1 false positive in 3333 impostor search attempts. The horizontal green line corresponds to the 3% false negative goal implied by legislation in the U.S.

Region flight is departing to

Figure 5: Comparison of false negative identification rates between number of images enrolled (one per person, vs. several) and between algorithms. The algorithms were submitted to between June 2018 and April 2021. Each point corresponds to one flight to the identified region the gallery for which is populated with ENTRY images from each of $N=420$ individuals. The blue text is a false negative identification rate (FNIR), often below 1%. The orange text is the number of simulated flights, out of 567, for which the number of false negative errors is zero. The threshold is set to target a false positive identification rate of 0.0003 corresponding to 1 false positive in 3333 impostor search attempts.

The failure of NEC-3 to exploit multiple images may stem from how we provided images to the gallery. In FRVT we typically provide all images of an individual to the algorithm in one call to the template generation function the algorithm consumes multiple images and has the opportunity to select or fuse images as it sees fit. However, that is atypical operationally: images are provided to the algorithm serially such that multiple images of the same person result in separate enrolled templates - that is the model followed here ${ }^{14}$ even though it denies the algorithms an explicit fusion opportunity. Figure 5 shows analogous results for nine of the more accurate algorithms evaluated in FRVT through November 2011. The panels are included in order of mean overall number of false negatives. Notably:

1. For the majority of flights, the most accurate algorithms correctly identify every passenger, and only ever fail to on up to 2 out 420 people.
2. On this metric there are multiple algorithms affording lower false negative identification error rates than does NEC-3. This is an existence proof of better accuracy that suggests an PCA will benefit from monitoring of test results and regular technology refresh. A PCA would need to factor other variables into procurement from a new developer including performance aspects (speed, scalability to large galleries, and demographic equitability) and contractual factors like capital and transaction costs, including those of integration.

3.2.3 False negative vs. false positive tradeoff

The results for each algorithm thus far have been stated at a single threshold. If we had set this threshold to a higher value the false negative rates would also have been higher, but with the advantage of lower false positive rates. Conversely, if the threshold had been low, false negatives would be better and false positives could occur more easily. The threshold is conventionally set to achieve a low enough probability that an impostor could match an enrolled identity thereby meeting some planned security objective. In one-to-many applications, an impostor only needs to match any enrolled identity to gain access - he has N opportunities. This generally necessitates higher thresholds than one-to-one verification where the impostor claims one particular identity.

[^26]| PCA $=$ PASSPORT CONTROL AGENCY | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | FALSE NEG. ID RATE | $\mathrm{N}=$ NUM. ENROLLED SUBJECTS |
| :--- | :---: | :---: | :---: |
| TVS $=$ TRAVELER VERIFICATION SERVICE | FPIR $(\mathrm{N}, \mathrm{T})=$ | FALSE POS. ID RATE | $\mathrm{T}=$ THRESHOLD |

Figure 6: Error tradeoff for 26 algorithms executing 1: N searches with $N=420$ people enrolled with a single image. The 10 pointpairs correspond to 10 possible thresholds for each algorithm. The red and blue boxes correspond to female and male travelers; their relative displacement indicates generally higher false positives and false negative rates in women. Smaller displacement indicates smaller (better) demographic differential (see NEC and Paravision-5, for example). The horizontal green line corresponds to 3\% false negative goal implied by legislation in the U.S.

What should the false positive identification rate be?

This question is about policy. As discussed in in the introduction a TVS can serve double duty as an aircraft access control system and as a visa-holder EXIT status facilitation system. The discussion centers on what the system is trying to prevent - stowaways, evasion of traveler-to-bag matching, or faking someone's departure.

One factor is the prior probability that someone would try to board a flight at all. It's likely quite common and not necessarily nefarious - the author has accidentally gone to the wrong gate on more than occasion. For pure facilitation a low threshold could be used, but in its access control role that would allow any traveler to board, and potentially get free passage. A conventional value for access control is for false positive rate of 1 in 10000 . Lower values can used but impostors will switch to active attack techniques to achieve a false positive. One factor is variability in false positive rates with demographics: many algorithms can give 100 times more false positives on elderly, female people from certain countries.

Figure 6 shows the error rate tradeoff by plotting false negative identification rates against false positive identification rates at ten operating thresholds spread over four decades of FPIR, from 1 in 33333 to nearly 1 in 3 . Instead of showing the full curves, the ten-point pairs expose the increase in FNIR at low FPIR but also show the difference in error rates for men and women.

We note the following points:

1. Some algorithms give generally lower FNIR across the range of FPIR. This is simply a re-iteration that accuracy varies markedly.
2. Some algorithms give a flat error tradeoff characteristic. This is most evident for the idemia-8, deepglint-1, nec3 , paravision 5 and sensetime- 4 algorithms. This is an attractive property of any biometric system because it allows very low false positive identification rates to be attained without intolerable increases in false negative identification rates. This becomes important later when we increase the enrolled population size by a factor of 100.
3. Most algorithms give FNIR below 0.03 (the green line in the plots) for a wide range of FPIR, thereby meeting the legislative mandate to be able to verify the EXIT of 97% of (in-scope) travelers.

Comparing Figure 7 with Figure 6 shows that across the four-decade range of FPIR, the FNIR values are reduced by using multiple enrollment images. The single-image enrollment represents "worst-case" of having just one prior encounter. The multi-image case is more typical.

Note that this analysis doesn't answer the technical question of whether enrolling multiple images per subject increases FPIR versus using just single image. The reason is that the thresholds for multiple enrollments are generally higher than for singles. There are exceptions - Idemia-7 for example. The question is important in situations where some travelers might have dozens of enrollment images and the algorithm response could be to attract false matches i.e. to make such enrollees lambs ${ }^{15}$.

[^27]| PCA $=$ PASSPORT CONTROL AGENCY | FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$ | FALSE NEG. ID RATE | $\mathrm{N}=$ NUM. ENROLLED SUBJECTS | $\mathrm{T}=0 \rightarrow$ Investigation |
| :--- | ---: | :--- | :--- | :--- |
| TVS $=$ TRAVELER VERIFICATION SERVICE | FPIR $(\mathrm{N}, \mathrm{T})=$ | FALSE POS. ID RATE | $\mathrm{T}=$ THRESHOLD | $\mathrm{T}>0 \rightarrow$ Identification |

Error tradeoffs informing FPIR choice for $\mathrm{N}=420$ people each enrolled with multiple images. Up to 10 points are shown corresponding to thresholds giving FPIR of $3 \mathrm{e}-05,1 \mathrm{e}-04,3 \mathrm{e}-04,0.001,0.003,0.01,0.03,0.1,0.3$, 1 over all searches

Figure 7: Error tradeoff for 26 algorithms executing 1:N searches with $N=420$ people each enrolled with multiple images. The 10 point-pairs correspond to 10 possible thresholds for each algorithm. The red and blue boxes correspond to female and male travelers; their relative displacement indicates generally higher false positives and false negative rates in women. Smaller displacement indicates smaller (better) demographic differential (see NEC and Paravision-5, for example). The horizontal green line corresponds to 3\% false negative goal implied by legislation in the U.S.

3.2.4 Demographics: Differentials by sex

Vertical displacement of point pairs in Figure 6 and Figure 7 reveal broadly higher False Negative Identification Rates in women than in men. This is consistent with NIST IR 8280 using other kinds of images. The cause of this is not known. Note some algorithms, including NEC-3, Microsoft-6 and Neurotechnology-7, give the opposite behavior or fairly equitable rates.
The horizontal displacement in the figures show that all algorithms give a factor of 2 or 3 times higher false positive identification rates in women; this means that women will be mismatched against a wrong identity somewhat more often than men. This will be rare but over enough flights it will disadvantage more women than men. Algorithms from Microsoft, NEC, and Cognitec give notably smaller differentials.

Figure 8 summarizes false negative rates by sex: the difference often amounts to 1 additional false negative in women than men. Note that there are many flights with zero false negative flights for both sexes.

Figure 8: False negative identification rates by algorithm and sex. Each point corresponds to the boarding of $N=420$ people on to one flight where each is enrolled with multiple images. The blue text is a FNIR value for that algorithm on that sex. The green line connotes a 3\% FNIR (reflecting a legislative mandate). The yellow line is at 1% FNIR. The cluster of points at 0.0009 corresponds to zero errors (adjusted to plot on a log scale) - the orange text gives the number of simulated flights, out of 567, for which there are no false negative errors. The next cluster near 0.004 corresponds to 1 error out of around 210 males.

3.2.5 Demographics: False positve differentials by region

Figure 9 shows false positive identification rates by region and by sex for two algorithms from NEC and Canon. Appendix B gives analagous figures for all algorithms. We make the following comments:

1. Magnitude: The NEC-3 algorithms shows FPIR is quite insensitive to geography and sex with false positive identification rates estimates mostly clustered between 2×10^{-4} and 7×10^{-4} In constrast Canon's cib-000 algorithm gives FPIR estimates between 7×10^{-5} and 2×10^{-3}. As noted in NIST Interagency Report 8280 the NEC-3 algorithm is taking steps to normalize false positive rates in one-to-many searches.
2. Sex: It is very common across algorithms for women to give higher FPIR than men. The NEC-3 algorithm gives
broadly the smallest differential in FPIR value - cf. the y-axis in the next Figure.
3. Region: False positive identification rates are commonly an order of magnitude higher in Asian women than in European men. For Canon's cib-0 algorithms there is a factor of 30 variation.

As always, with the observation of a demographic differential, the question is "what is the impact"? The overall target FPIR was 0.0003 , achieved by setting an algorithm specific target. The worst upside departure from that is Canon's cib-1 algorithm (see Appendix B) which gives FPIR for Asian women near 0.003. This FPIR, 1 in 333, is still low but implies between one and two false positives per flight boarding - these would likely manifest as an in-gallery false match described in section 1.5. This may be an acceptable cost, but does constitute a disadvantage for Asian women attempting to record their departure from the United States.

The error tradeoff characteristics of figure 11 are, for some algorithms, quite flat implying that even lower false positive identification rates could be targetted (by increasing the threshold) without great adverse implications for false negative identification rates.

Figure 9: For two algorithms, each point shows a false positive identification rate estimated by running c. 120000 searches against that flight's gallery. Red and blue connote male and female enrollees. Analogous figures for all algorithms appear in Appendix B.

4 Scaling One-To-Many Authentication to Larger Populations

4.1 Motivation

Thus far we have discussed the use of 1:N face recognition for recording the exit of travelers while boarding an aircraft. A PCA can appropriately limit enrollment in FR galleries to just the population expected on the flight. This data minimization reduces mis-match possibilities. However, the travel industry has articulated a vision for paperless travel. In its simplest form, this starts when a traveler authenticates to an authoritative travel document (passport) using a one-to-one biometric verification of a live photo and then proceeds through an airport's "touchpoints" such as the TSA line and airline lounges and aircraft boarding, without presenting a boarding pass. Instead, the traveler engages a camera which submits a photo as a query into a database of individuals expected and authorized to proceed. For example, such a system could be fielded at a security checkpoint. In such cases many more people would need to be enrolled into the face recognition engine than at a departure gate - for example, all people expected in the airport during a time window extending from a few hours before their respective flights to the time of expected or actual departure. The number of individuals could readily extend into the tens of thousands, and more if airside locations would additionally recognize inbound passengers (e.g. buying in duty-free shops).

4.2 Background

The dependence of recognition accuracy on enrolled population size is well known. Qualitatively, as enrolled population grows any given search has a greater possibility of a false match. Such outcomes can occur for two types of traveler.

1. An illegitimate traveler - someone who is not expected in the airport - makes a presentation to the camera in attempt to pass the checkpoint. This succeeds if the traveler matches any enrolled identity with a comparison score above threshold.
2. A legitimate traveler - someone who is expected at the touchpoint - presents to the camera but matches an identity other than self. This may be inconsequential at a TSA line, but would be consequential in a hypothetical duty-free store application of this approach should the biometric result allow purchase without further authentication.

The rate at which false positives occur is the false positive identification rate (FPIR). In a biometric test, FPIR is estimated by conducting non-mated searches into an enrolled population. FPIR is stated as the number of searches resulting in a false positive divided by the number of non-mated searches. How does FPIR scale with the number of enrolled identities? There are two classes of face search algorithms: Class A is those that implement a $1: \mathrm{N}$ search as N 1:1 comparisons followed by a sort operation, and Class B is comprised of everything else including those that implement some more complex search strategy.

- Class A algorithms are expected to give a FPIR increases with the number of enrolled identities. It may increase further also if those identities are enrolled with several images each. Given a system in which N people are enrolled, with one image each, a standard binomial model gives

$$
\begin{equation*}
\operatorname{FPIR}(N, T)=1-(1-\operatorname{FMR}(T))^{N} \tag{3}
\end{equation*}
$$

where the system owner sets the threshold T , and has an estimate of $\operatorname{FMR}(\mathrm{T})$, the false match rate in purely one-to-one comparisons. For small FMR, this approximates to

$$
\begin{equation*}
\operatorname{FPIR}(N, T)=N F M R(T) \tag{4}
\end{equation*}
$$

implying that the one-to-many false positive hazard grows linearly with N .

- Class B one-to-many algorithms are those that do not implement 1:N search using N 1:1 comparisons - these can include fast-search algorithms (using trees, indexes etc) and those that normalize scores across some or all of the gallery entries. These algorithms may not exhibit the (near) linear dependence of equations 3 and 4 . This can occur for other reasons also. Some algorithms adjust comparison scores to the database size such that FPIR becomes approximately independent of N. The NEC-3 and Idemia algorithms exhibit such behavior (see FRVT Part 2 and its report cards). This relieves the system owner of the need to configure thresholds for the given population size. A system owner might consult vendor documentation, or consult NIST's FRVT Part 2 report which documents the dependence of FPIR on N and T .

4.3 Simulation of Large-N Accuracy

4.3.1 Experimental design

We repeated the EXIT simulation given previously but instead of enrolling $\mathrm{N}=420$ individuals with one ENTRY image, we mixed in a further 41580 such images from a disjoint population selected without regard to demographics. The result is a set of 567 galleries, each with $\mathrm{N}=42000$ individuals. This population size is somewhat larger relative to the number of international passengers appearing daily in large U.S. airports in 2019.

4.3.2 Results

Figure 10 shows the number of false negatives expected when using the algorithm named on the horizontal axis to search three different kinds of galleries. The first enrolls 420 people with a single PCA ENTRY image; the second enrolls those same people with all prior PCA ENTRY encounters; the last enrolls 42000 people with a single image. The kind of gallery is encoded by the shape. The vertical position of each point is the mean (over 567 regional galleries) of the number of false negatives when 420 test subjects are searched. The color of each point encodes the fraction of all 567 trials that give three or fewer false negatives.

We make the following observations:

1. The number of false negatives is higher with $\mathrm{N}=42000$ than with $\mathrm{N}=420$, as expected.
2. Some algorithms nevertheless give only modest increases in the number of false negatives. In the most accurate case, the mean number of passengers being rejected would be below 1% (4/420), and more than 75% of flights (trials) would have three or fewer false negatives out of the 420 people making attempts.
3. Other algorithms give substantially higher false negative rates - the graph shows FNIR approaching about 8% (34/420) for legacy algorithms.
4. Note that this analysis does not consider variance around the point estimates, nor sex or regional differences.

PCA $=$ PASSPORT CONTROL AGENCY	FNIR $(\mathrm{N}, \mathrm{R}, \mathrm{T})=$	FALSE NEG. ID RATE	$\mathrm{N}=$ NUM. ENROLLED SUBJECTS
TVS $=$ TRAVELER VERIFICATION SERVICE	FPIR $(\mathrm{N}, \mathrm{T})=$	FALSE POS. ID RATE	$\mathrm{T}=$ THRESHOLD

4.3.3 Discussion

Large enrolled populations require algorithms to be configured to operate at lower false match rates - following Equation 4 an increase in N from 420 to 42000 will necessitate a 100 -fold FMR reduction to maintain constant FPIR. This puts a premium on algorithms that maintain relatively low FNIR at lower FPIR.

By inspecting Figure 11, for $N=42000$, all algorithms except some from Cloudwalk, Deepglint, Idemia, NEC, Paravision, Sensetime, Visionlabs and X-ForwardAI cannot maintain FNIR below 0.03 so, depending on FPIR, would not be meeting a legislative mandate for FNIR <0.03 and TPIR >0.97.

Figure 10: Comparing the number of false negatives expected when $N=420$ people are searched against galleries containing imagery from enrolled populations of size of $N=420$ and $N=42000$. The threshold is fixed in all cases to produce a false positive identification error rate of 1 in 3333 (FPIR = 0.0003). The threshold value for each algorithm will usually be higher for the larger gallery to maintain the same false positive likelihood. The horizontal green line corresponds to a 3% false negative rate.

Error tradeoffs informing FPIR choice for people enrolled with single images. Up to 10 points are shown corresponding to thresholds giving FPIR of $3 \mathrm{e}-05,1 \mathrm{e}-04,3 \mathrm{e}-04,0.001,0.003,0.01,0.03,0.1,0.3,1$ over all searches

False positive identification rates (FPIR)
Figure 11: Error tradeoff characteristics for twelve algorithms conducting identical sets of searches into galleries of size $N=420$ and $N=42000$. The horizontal line corresponds to a 3% false negative identification rate. The left side of each panel is relevant to the more "lights-out" use of FR in positive access control and EXIT facilitation; the right side of each panel corresponds to high false positive identification rates for investigative uses of $F R$ where humans review candidate lists. A flat profile confers the advantage of being able to run at lower FPIR without much elevation in FNIR.

5 Factors That Render Accuracy Estimates Approximate

The result in this report do not constitute an answer to the questions "how well does a particular TVS work", "does TVS satisfy a 97% legislative verification mandate" or "what is the accuracy of a PCA's EXIT solution". Why? Because the questions are different and because the tests we have reported here, while extensive, depart from the intended and desirable tests as follows. For each factor discussed, we note in blue the expected effect on accuracy.

1. Airline re-direction of passengers. During the EXIT pilot, airlines diverted some customers toward the legacy paper-based boarding process. This was particularly true when boarding was proceeding slowly or when cameras of the network to TVS were malfunctioning. This is not expected to bias accuracy in an offline test either way, but would lead to complication in using TVS logs to measure accuracy.
The population so diverted was sometimes not random - very tall or short travelers, and those with children, would be directed from the FR line. To the extent that this occurs, and to the extent that the NIST EXIT collection is not itself affected by this, our estimates of accuracy may be too high.
2. Algorithms: NIST does not have access to the actual algorithms deployed in TVS systems. Instead this study uses prototypes submitted to the one-to-many search track of the FRVT. These prototypes are identified using a name and a number. For example, "NEC-3" is from the NEC Corporation, and the three is simply a sequence number of algorithms sent to NIST. NIST is unable to confirm whether any prototype in FRVT has ever been deployed. Indeed a developer may make decisions on whether to productize a prototype on the basis of FRVTderived technical information. In any case, a developer will maintain their own versioning designations. NIST is not provided with copies of operational algorithms.
3. Active development: Given persistent improvements in accuracy, as documented in FRVT, it is incumbent on end-users to instantiate a "technology-refresh" procedure so as to realize accuracy gains. Note that results in this report for 2018-era algorithms are likely out-of-date. Thus, for any given developer, it is likely that higher accuracy is available than is estimated here.
4. Algorithm post-processing: Accuracy will change if any software is used to post-process candidate lists produced by the algorithm. Conventionally the face recognition algorithm issues a candidate identity and a similarity score, which is compared to a system-wide threshold. If post-processing is used to re-score or re-rank then its effect on both false positive and false negative identification rates should be measured by comparing with that available from the raw candidate lists alone.
5. Image data: International travel has long been predicated on presentation of a passport. With e-Passports it is common for passport images to be retrieved and used for $1: 1$ verification of the the traveler. If on ENTRY those images are retained by the PCA , they can be used in downstream EXIT face recognition processes. The same applies to visa portraits collected as part of a visa application.
(a) We did not have passport or passport-equivalant images for use in this study. These include visa images of various travelers and passport photos of the citizens persons. Instead we used airport arrivals hall photos with reduced quality. To the extent that a TVS makes use of high-quality passport and visa images, the accuracy values reported here are likely to be worse than for a system for which such images are available.
(b) In this study we used an extract of a much larger corpus provided to NIST in May 2019. These images were anonymized and accompanied by limited metadata. The set included images labelled exit, and ENTRY. The former were collected in airport departures. A few of the exit images appear to have been collected from
persons in a vehicle, as could occur at a land-border. This factor will tend cause our accuracy estimates to differ from those of an operational TVS.
(c) Our exit images were collected in 2018 and the first four months of 2019. We assume that subsequent cameras, and their refined deployment by airlines, will yield improved images today compared to those used in this study, so we would expect improved accuracy over that noted here.
(d) Moreover, our exit images are not accompanied by camera make and model information, nor flight manifest information. It was therefore not possible for NIST to exactly reconstruct "a flight" - instead we pooled all exit images as probes searched against each gallery. Our search set therefore pools exit images from quite different cameras and locations (airports). We are therefore unable to compare cameras and collection sites. From observations made during site visits, we note markedly different approaches to the quality-speed tradeoff. We expect therefore that our accuracy estimates have reduced variance compared to that from a TVS.
(e) If exit images are retained, even for a short period, they may be useful in offline "after-hours" accuracy estimation. For example, images from one flight could be used to make non-mated searches into a gallery of another flight, so as to estimate FPIR.
(f) Our galleries were constructed to hold people from one travel region as inferred from the nation that issued their travel document. This means that the galleries in this document will contain people who never flew together.
6. Homogenous galleries. Our practice of making galleries from people holding travel documents from countries in the same region of the world probably means that false positive rates are higher than if the galleries had been composed of a more mixed population. This practice would tend to depress our accuracy relative to those in TVS.
7. Presence of images active attack. It is possible that some of the captured images are from a presentation attack that went undetected, for example using a face mask. The occurrence of this is considered to be very small. Note that since we didn't have passport images, we do not expect the dataset to contain morphed images. While this is increasing possibility operationally, it can be averted by live, trusted capture of images as in a primary passport control lane.

Appendices

Appendix A Figures summarizing false negatives for each algorithm

Figure 12: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 13: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 14: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 15: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 16: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 17: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 18: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 19: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 20: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Figure 21: For the eleven regions and two sexes, each point give the expected number of false negatives for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The numbers are stated by scaling measured numbers of false negatives to 210 per sex. The points' positions are jittered horizontally and vertically to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have. The number of individuals in the gallery is exactly 420.

Appendix B Figures summarizing false positive identification rate for each algorithm

Figure 22: For the eleven regions and two sexes, each point give the false positive identification rarte for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The points' positions are jittered horizontally to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have The number of individuals in the gallery is exactly 420.

Algorithm idemia_008 False Positive Identification Rates by Region and Sex

Figure 23: For the eleven regions and two sexes, each point give the false positive identification rarte for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The points' positions are jittered horizontally to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have The number of individuals in the gallery is exactly 420.

Figure 24: For the eleven regions and two sexes, each point give the false positive identification rarte for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The points' positions are jittered horizontally to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have The number of individuals in the gallery is exactly 420.

Algorithm ntechlab_008 False Positive Identification Rates by Region and Sex

Figure 25: For the eleven regions and two sexes, each point give the false positive identification rarte for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The points' positions are jittered horizontally to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have The number of individuals in the gallery is exactly 420.

Figure 26: For the eleven regions and two sexes, each point give the false positive identification rarte for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The points' positions are jittered horizontally to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have The number of individuals in the gallery is exactly 420.

Algorithm tech5_002 False Positive Identification Rates by Region and Sex

Figure 27: For the eleven regions and two sexes, each point give the false positive identification rarte for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The points' positions are jittered horizontally to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have The number of individuals in the gallery is exactly 420.

Algorithm xforwardai_001 False Positive Identification Rates by Region and Sex

Figure 28: For the eleven regions and two sexes, each point give the false positive identification rarte for a simuliated flight in which 420 passengers, 210 men and 210 women, attempt boarding after being enrolled with multiple images each. The points' positions are jittered horizontally to mitigate over-plotting invisibility. There are many more flights to Europe, particularly, and East Asia simply because of their representation in the EXIT image corpus we have The number of individuals in the gallery is exactly 420.

References

[1] Patrick Grother, Mei Ngan, and Kayee Hanaoka. Face recognition vendor test (frvt) part 2: Identification. Interagency Report 8271, National Institute of Standards and Technology, Home: https://pages.nist.gov/frvt/html/frvt1N.html, September 2019. https:/ /doi.org/10.6028/NIST.IR.8271.
[2] Patrick Grother, Mei Ngan, and Kayee Hanaoka. Face recognition vendor test (frvt) part 3: Demographic effects. Interagency Report 8280, National Institute of Standards and Technology, Home: https:/ /pages.nist.gov/frvt/html/frvt11.html, December 2019. https://doi.org/10.6028/NIST.IR.8280.

[^0]: ${ }^{1}$ For example, Resnets [11], Inception [23], very deep networks [18, 21] and spatial transformers.
 ${ }^{2}$ NEC-0 prepares termplates much faster than NEC-2 but gives twenty times more misses. Detmalog-5 executes a template search much more quickly than Dermalog-6 but is also much less accurate.

[^1]: 2019/09/11
 17:24:52

[^2]: ${ }^{9}$ The gallery size here is 12 million people, 26.1 million images. Given 331254 non-mated searches, an exhaustive implementation of one-too-many search would execute 8.6 trillion comparisons. At a false positive identification rate of 0.0025 the number of false positives is, to first order 828 corresponding to single-comparison false match rate of $828 / 8.6$ trillion $=9.610^{-12}$ i.e. about 1 in 10 billion. Strictly this FMRR computation meaningful only for algorithms that implement $1: \mathrm{N}$ search using N 1:1 comparisons, which is not al ways the case.
 ${ }^{4}$ See the CDC's National Vital Statistics Report for 2017: https:/ / WWw.cdc.gov/nchs/data/nvsr/nvsr6̈7/nvsró7.08-508.pdf

[^3]: 2019/09/11

[^4]: ${ }^{5}$ Intel Xeon CPU E5-2630 v4 runnitig at 2.20 GHz .

[^5]: ${ }^{7}$ For example, a person might skip applying for a passport for one cycle, letting it expire. In addition, a person might submit identical images (from the same photography session) to consecutive passport applications at five year intervals.
 ${ }^{8}$ A number of distributions have been considered to model recidivism, see for example [3].
 ${ }^{4}$ There are no formal face template standards. Template standards only exist for fingerprint minutiae - see ISO /IEC 19794-2:2011.

[^6]: ${ }^{10}$ For example, the Megaface benchurark. This is bad practice for several reasons: First, if a developer knows, or can reasonably assume, that a mate always exists, then unrealistic garning of the test is possible. A second reason is that it does not put FPIR on equal footing with FNIR and that matters because in most applications, not all searches have mates - not everyone has been previously entolled in a driving license issuance or a criminal justice system - so addressing between-class separation becomes necessary:

[^7]: ${ }^{11}$ This value is the sum of two partial false negative rates: $\mathrm{FNIR}_{B}=0.15 * 0.0039$ plus $\mathrm{FNIR}_{\mathcal{D}}=0.3 * 0.0039$

[^8]:

[^9]: ${ }^{1}$ Gains in face recognition performance stem from well-capitalized AI research in industry and academic leading to the development of convolutional neural networks, and open-source implementations thereof (Caffe, Tensorflow etc.). For face recognition the availability of large numbers of identity-labeled images (from the web, and in the form of web-curated datasets [VGG2, I]B-C]), and the availability of ever more powerful GPUs has supported training those networks.

[^10]: ${ }^{2}$ See Mitigating Bias in Ai Models.
 ${ }^{3}$ The famous PIE databases, for example.
 ${ }^{4}$ Early documents, such as Best Practice Recommendation for the Capture of Mugshots, 1999, seeded later formal standardization of ISO/IEC 19794-5.
 ${ }^{5}$ See NIST Interagency Report 6322, 1999,
 ${ }^{6}$ See this overview.

[^11]: ${ }^{7}$ See recent results for verification algorithons in the FRVT reports, and for identification algorithms in NIST Interagency Report 8271 [17]. For a formal longitudinal analysis of ageing, using mixed-effects models, see Best-Rowden [3].

[^12]: ${ }^{8}$ Genetic influetice on friction ridge structure is known: The absence of the SMARCAD1 gene leads to absence of fingerprints at birth. Further, the distance between friction ridges is smaller, on average in women than in men, and this may well be under genetic influence. The distance itself is likely not used as a biometric feature, at least not explicitly. Fingerprint pattern classes (arch, whorl etc.), however, have been shown to have regional (geographic) variations, and these were, at least historically, used in one-to-many multi-finger search strategies.
 ${ }^{9}$ See, for example, the figure in Annex 8 for algorithms from HIK, Dahua, Yitu, Alphaface, Deepsea Tencent, Tostriba-

[^13]: ${ }^{10}$ We discount that this result is anomalous as follows; 1. The sample size may be small for this study, but not absolutely small: The Somalia-Somalia FMR measumement is obtained from 1733116 comparisons involving 2632 inages of 1974 males. 2. The effect persists when comparing Somalian and Ethiopian faces, and we'd suspect that ground-truth labelling errors - instances of one person being present two IDs - would not persist actoss national boundaries. 3. In addition to high FMR, which is a count of high imposter scores, the mean similarity score is also very high, an observation that again applies to all algorithms.

[^14]: ${ }^{11}$ The data supplied to NIST tags this group with letter "I" per the EBTS standard which describes this group as "American Indian, Eskimo, Alaskan native, or a person having origins in any of the 48 contiguous states of the United States or Alaska who maintains cultural identification through tribal affiliation or community recognition". In the figures we replace the letter " T "with "American Indian" to distinguish from subjects from India in the international datasets.
 ${ }^{12}$ Specifically instances of "one person under two IDs" can cause apparent false positives, that are actually true positives.

[^15]: ${ }^{19}$ See Amex 1 for descriptions of the images and metadata.

[^16]: ${ }^{14}$ See the CDC's National Vital Statistics Report for 2017. https:/ /www.cdcgov/nchs/data/nvsr/ nvsro7/rvst67.08-508.pdf

[^17]: ${ }^{15}$ The "operator-specified" parameters might sometimes be set by-policy, or by the manufacturer of the system.

[^18]: ${ }^{15}$ For example, a recent news article noted the use of automated face recognition to search around 21000 spectators at soccer games against a watch-list of about 50 people.

[^19]: ${ }^{12}$ Such a compound biometric would conventionally still require collection of two images: First an iris image with near infraved illumination and the face inage either entirely it anbient light, or ambient light with a near infrared component. The recogrution of irises in purely visible-light images is highly problematic in brown-eyed people as melanin in the iris absorbs incident light at visible wavelengths.

[^20]: ${ }^{1}$ This metadata was vital to our 2019 quantification of demographic effects in NIST Interagency Report 8280. [2]
 ${ }^{2}$ The terms ENTRY and EXIT refer respectively to inbound and outbound border crossings to, in this case, the United States.
 ${ }^{3}$ See 8 U.S.C. 1187(c).
 ${ }^{4}$ We chose to run only recent and high-performing algorithms and also some widely used prior-generation algorithms. Many more algorithms have been entered into the $1: \mathrm{N}$ search track of FRVT.

[^21]: ${ }^{5}$ This can occur because of a gate change, or because someone goes to the wrong gate. The author, for example, has accidentally tried paper-based boarding at the adjacent gate on several occasions.
 ${ }^{6}$ Threshold calibration is an imprecise process because FPIR often depends on demographics and image quality related properties. A threshold is set starting with vendor recommendation and refined using offline tests (such as FRVT) or empirical instrumentation and tests or logging of the operational system.

[^22]: ${ }^{7}$ In the young, typical contact sensors have inadequate resolution to resolve the fine friction ridge structure. In the elderly the factors include inelasticity of the skin and inability to present flat impressions e.g. due to arthritis.

[^23]: ${ }^{8}$ See the scenario tests conducted at the Maryland Test Facility, for example.
 ${ }^{9}$ PAD approaches have advanced in recent years, both in software and hardware. However, their use will often increases false negatives because they sometimes erroneously flag a bona-fide presentation. Their use may be more appropriate on inbound arrival processing (ENTRY).

[^24]: ${ }^{10}$ Aircraft configuration makes a difference, so that while the A380 is capable of carrying 560 economy class passengers it is atypical for that to occur for aircraft departing the United States.
 ${ }^{11}$ Not all, as the U.S. PCA stated, their TVS "does not enroll recent crossing images of U.S. travelers into the gallery, but does enroll recent crossing images of foreign nationals into the gallery."
 ${ }^{12}$ The single-image enrollment will be more pertinent to processing of citizens of a country for whom, often, only one photo exists in the gallery. The multiple-image enrollments yield better accuracy, and are pertinent to foreign travelers.

[^25]: ${ }^{13}$ In visits to observe EXIT boarding processes June 2019, the author observed children, without instruction, standing on tip-toes in order to present their face to the camera mounted above five feet. This was sometimes effective.

[^26]: ${ }^{14}$ See Figure 8 and section 3.2 in the FRVT 1:N report, NIST Interagency Report 8271 [1] for details on multi-image enrollment and metrics. See the FRVT page for newer algorithm results.

[^27]: ${ }^{15}$ The term lamb, a category defined in "The Biometric Zoo", refers to an enrollee who attracts more than average number of false matches.

